共 137 条
Magnetic-Field Effects in Organic Semiconducting Materials and Devices
被引:345
作者:
Hu, Bin
[1
]
Yan, Liang
[1
]
Shao, Ming
[1
]
机构:
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
基金:
美国国家科学基金会;
关键词:
INTRAMOLECULAR EXCIPLEX FLUORESCENCE;
SENSITIZED DELAYED FLUORESCENCE;
TRIPLET-TRIPLET ANNIHILATION;
CHARGE-TRANSFER FLUORESCENCE;
DEPENDENT EXCITON FORMATION;
CHAIN-LINKED PHENANTHRENE;
ELECTRON-SPIN MOTION;
RADICAL ION-PAIRS;
GEMINATE RECOMBINATION;
HYPERFINE MODULATION;
D O I:
10.1002/adma.200802386
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
It has been experimentally discovered that a low magnetic field (less than 500 mT) can substantially change the electroluminescence, photoluminescence, photocurrent, and electrical-injection current in nonmagnetic organic semiconducting materials, leading to magnetic-field effects (MFEs). Recently, there has been significant driving force in understanding the fundamental mechanisms of magnetic responses from nonmagnetic organic materials because of two potential impacts. First, MFEs can be powerful experimental tools in revealing and elucidating useful and non-useful excited processes occurring in organic electronic, optical, and optoelectronic devices. Second, MFEs can lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies. This progress report discusses magnetically sensitive excited states and charge-transport processes involved in MFEs. The discussions focus on both fundamental theories and tuning mechanisms of MFEs in nonmagnetic organic semiconducting materials.
引用
收藏
页码:1500 / 1516
页数:17
相关论文