Auxin Depletion from the Leaf Axil Conditions Competence for Axillary Meristem Formation in Arabidopsis and Tomato

被引:144
作者
Wang, Quan [1 ]
Kohlen, Wouter [1 ]
Rossmann, Susanne [1 ]
Vernoux, Teva [2 ]
Theres, Klaus [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
[2] Univ Lyon, CNRS, Lab Reprod & Dev Plantes, INRA,ENS Lyon,UCBL, F-69364 Lyon, France
关键词
CUP-SHAPED-COTYLEDON; SHOOT APICAL MERISTEM; BOX PROTEIN TIR1; INFLORESCENCE DEVELOPMENT; BOUNDARY FORMATION; ORGAN BOUNDARY; BUD FORMATION; GENE; TRANSPORT; THALIANA;
D O I
10.1105/tpc.114.123059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development.
引用
收藏
页码:2068 / 2079
页数:12
相关论文
共 62 条
[1]   Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant [J].
Aida, M ;
Ishida, T ;
Fukaki, H ;
Fujisawa, H ;
Tasaka, M .
PLANT CELL, 1997, 9 (06) :841-857
[2]  
Aida M, 1999, DEVELOPMENT, V126, P1563
[3]   Auxin influx carriers stabilize phyllotactic patterning [J].
Bainbridge, Katherine ;
Guyomarc'h, Soazig ;
Bayer, Emmanuelle ;
Swarup, Ranjan ;
Bennett, Malcolm ;
Mandel, Therese ;
Kuhlemeier, Cris .
GENES & DEVELOPMENT, 2008, 22 (06) :810-823
[4]   Integration of transport-based models for phyllotaxis and midvein formation [J].
Bayer, Emmanuelle M. ;
Smith, Richard S. ;
Mandel, Therese ;
Nakayama, Naomi ;
Sauer, Michael ;
Prusinkiewicz, Przemyslaw ;
Kuhlemeier, Cris .
GENES & DEVELOPMENT, 2009, 23 (03) :373-384
[5]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[6]   MORPHOGENESIS IN PINOID MUTANTS OF ARABIDOPSIS-THALIANA [J].
BENNETT, SRM ;
ALVAREZ, J ;
BOSSINGER, G ;
SMYTH, DR .
PLANT JOURNAL, 1995, 8 (04) :505-520
[7]   A novel sensor to map auxin response and distribution at high spatio-temporal resolution [J].
Brunoud, Geraldine ;
Wells, Darren M. ;
Oliva, Marina ;
Larrieu, Antoine ;
Mirabet, Vincent ;
Burrow, Amy H. ;
Beeckman, Tom ;
Kepinski, Stefan ;
Traas, Jan ;
Bennett, Malcolm J. ;
Vernoux, Teva .
NATURE, 2012, 482 (7383) :103-U132
[8]   Shoot Branching and Leaf Dissection in Tomato Are Regulated by Homologous Gene Modules [J].
Busch, Bernhard L. ;
Schmitz, Gregor ;
Rossmann, Susanne ;
Piron, Florence ;
Ding, Jia ;
Bendahmane, Abdelhafid ;
Theres, Klaus .
PLANT CELL, 2011, 23 (10) :3595-3609
[9]   Regulation of auxin response by the protein kinase PINOID [J].
Christensen, SK ;
Dagenais, N ;
Chory, J ;
Weigel, D .
CELL, 2000, 100 (04) :469-478
[10]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743