A novel sensor to map auxin response and distribution at high spatio-temporal resolution

被引:556
作者
Brunoud, Geraldine [1 ]
Wells, Darren M. [2 ]
Oliva, Marina [1 ]
Larrieu, Antoine [2 ,3 ]
Mirabet, Vincent [1 ]
Burrow, Amy H. [4 ]
Beeckman, Tom [3 ]
Kepinski, Stefan [4 ]
Traas, Jan [1 ]
Bennett, Malcolm J. [2 ]
Vernoux, Teva [1 ]
机构
[1] Univ Lyon, Lab Reprod & Dev Plantes, UCBL, ENS Lyon,INRA,CNRS, F-69364 Lyon, France
[2] Univ Nottingham, Ctr Plant Integrat Biol, Loughborough LE12 5RD, England
[3] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium
[4] Univ Leeds, Fac Biol Sci, Ctr Plant Sci, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
BOX PROTEIN TIR1; ARABIDOPSIS ROOT; AUX/IAA PROTEINS; PLANT DEVELOPMENT; GENE-EXPRESSION; TRANSPORT; GROWTH; DEGRADATION; MERISTEM; RECEPTOR;
D O I
10.1038/nature10791
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Auxin is a key plant morphogenetic signal(1) but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins(2-6). Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein(7) was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII)(5) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors(4-6,8) and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.
引用
收藏
页码:103 / U132
页数:6
相关论文
共 42 条
[1]   EARLY AUXIN-INDUCED GENES ENCODE SHORT-LIVED NUCLEAR PROTEINS [J].
ABEL, S ;
OELLER, PW ;
THEOLOGIS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (01) :326-330
[2]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[3]   ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes [J].
Boonsirichai, K ;
Sedbrook, JC ;
Chen, RJ ;
Gilroy, S ;
Masson, PH .
PLANT CELL, 2003, 15 (11) :2612-2625
[4]   Root gravitropism: An experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants [J].
Boonsirichai, K ;
Guan, C ;
Chen, R ;
Masson, PH .
ANNUAL REVIEW OF PLANT BIOLOGY, 2002, 53 :421-447
[5]   Mechanism of Auxin-Regulated Gene Expression in Plants [J].
Chapman, Elisabeth J. ;
Estelle, Mark .
ANNUAL REVIEW OF GENETICS, 2009, 43 :265-285
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]   Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency [J].
Cutler, SR ;
Ehrhardt, DW ;
Griffitts, JS ;
Somerville, CR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3718-3723
[8]   A protocol to analyse cellular dynamics during plant development [J].
de Reuille, PB ;
Bohn-Courseau, I ;
Godin, C ;
Traas, J .
PLANT JOURNAL, 2005, 44 (06) :1045-1053
[9]   Plant development is regulated by a family of auxin receptor F box proteins [J].
Dharmasiri, N ;
Dharmasiri, S ;
Weijers, D ;
Lechner, E ;
Yamada, M ;
Hobbie, L ;
Ehrismann, JS ;
Jürgens, G ;
Estelle, M .
DEVELOPMENTAL CELL, 2005, 9 (01) :109-119
[10]   The F-box protein TIR1 is an auxin receptor [J].
Dharmasiri, N ;
Dharmasiri, S ;
Estelle, M .
NATURE, 2005, 435 (7041) :441-445