Regulation of tylosin biosynthesis involving 'SARP-helper' activity

被引:29
作者
Bate, Neil [1 ]
Bignell, Dawn R. D. [1 ]
Cundliffe, Eric [1 ]
机构
[1] Univ Leicester, Dept Biochem, Leicester LE1 9HN, Leics, England
关键词
D O I
10.1111/j.1365-2958.2006.05338.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tylosin production in Streptomyces fradiae is regulated via interplay between a repressor, TylQ, and an activator of the SARP family, TylS, during regulation of tylR. The latter encodes the pathway-specific activator of the tylosin-biosynthetic (tyl) genes. Also controlled by TylS is a hitherto unassigned gene, tylU, whose product is shown here to be important for tylosin production. Thus, targeted disruption of tylU reduced tylosin yields by about 80% and bioconversion analysis with the resultant strain revealed defects in both polyketide metabolism and deoxyhexose biosynthesis. Such defects were completely eliminated by engineered overexpression of tylR (but not tylS) and Western analysis revealed significantly reduced levels of TylR in the tylU-disrupted strain. These results are consistent with a model in which TylS and TylU act in concert to facilitate expression of tylR, for which TylU (but not TylS) is nonessential. Activator proteins of the SARP family, such as TylS, are widespread among Streptomyces spp. and are important regulators of antibiotic production. Their action has been widely studied with no prior indication of associated 'helper' activity, the prevalence of which now remains to be established.
引用
收藏
页码:148 / 156
页数:9
相关论文
共 42 条
[1]   Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein [J].
Arias, P ;
Fernández-Moreno, MA ;
Malpartida, F .
JOURNAL OF BACTERIOLOGY, 1999, 181 (22) :6958-6968
[2]   PROPERTIES OF STREPTOMYCES-FRADIAE MUTANTS BLOCKED IN BIOSYNTHESIS OF THE MACROLIDE ANTIBIOTIC TYLOSIN [J].
BALTZ, RH ;
SENO, ET .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1981, 20 (02) :214-225
[3]   BIOSYNTHESIS OF THE MACROLIDE ANTIBIOTIC TYLOSIN - A PREFERRED PATHWAY FROM TYLACTONE TO TYLOSIN [J].
BALTZ, RH ;
SENO, ET ;
STONESIFER, J ;
WILD, GM .
JOURNAL OF ANTIBIOTICS, 1983, 36 (02) :131-141
[4]   Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis [J].
Bate, N ;
Stratigopoulos, G ;
Cundliffe, E .
MOLECULAR MICROBIOLOGY, 2002, 43 (02) :449-458
[5]   Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae [J].
Bate, N ;
Butler, AR ;
Gandecha, AR ;
Cundliffe, E .
CHEMISTRY & BIOLOGY, 1999, 6 (09) :617-624
[6]  
BECKMANN RJ, 1989, GENETICS MOL BIOL IN, P176
[7]   The regulation of antibiotic production in Streptomyces coelicolor A3(2) [J].
Bibb, M .
MICROBIOLOGY-SGM, 1996, 142 :1335-1344
[8]   THE MESSENGER-RNA FOR THE 23S RIBOSOMAL-RNA METHYLASE ENCODED BY THE ERME GENE OF SACCHAROPOLYSPORA-ERYTHRAEA IS TRANSLATED IN THE ABSENCE OF A CONVENTIONAL RIBOSOME-BINDING SITE [J].
BIBB, MJ ;
WHITE, J ;
WARD, JM ;
JANSSEN, GR .
MOLECULAR MICROBIOLOGY, 1994, 14 (03) :533-545
[9]   PLASMID CLONING VECTORS FOR THE CONJUGAL TRANSFER OF DNA FROM ESCHERICHIA-COLI TO STREPTOMYCES SPP [J].
BIERMAN, M ;
LOGAN, R ;
OBRIEN, K ;
SENO, ET ;
RAO, RN ;
SCHONER, BE .
GENE, 1992, 116 (01) :43-49
[10]   Antibiotic resistance gene cassettes derived from the Omega interposon for use in E-coli and Streptomyces [J].
BlondeletRouault, MH ;
Weiser, J ;
Lebrihi, A ;
Branny, P ;
Pernodet, JL .
GENE, 1997, 190 (02) :315-317