Solving large-scale sparse semidefinite programs for combinatorial optimization

被引:178
作者
Benson, SJ [3 ]
Ye, YY
Zhang, X
机构
[1] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
[2] Huazhong Univ Sci & Technol, Sch Mech Engn, Wuhan 430074, Hubei, Peoples R China
[3] Univ Iowa, Computat Optimizat Lab, Iowa City, IA 52242 USA
关键词
semidefinite programming; dual potential reduction algorithm; maximum cut problem;
D O I
10.1137/S1052623497328008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a dual-scaling interior-point algorithm and show how it exploits the structure and sparsity of some large-scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational results of interior-point algorithms for approximating maximum cut semidefinite programs with dimension up to 3,000.
引用
收藏
页码:443 / 461
页数:19
相关论文
共 36 条
  • [31] Semidefinite programming
    Vandenberghe, L
    Boyd, S
    [J]. SIAM REVIEW, 1996, 38 (01) : 49 - 95
  • [32] WOLKOWICZ H, IN PRESS DISCRETE AP
  • [33] YE Y, 1997, WILEY INTERSCI SER D
  • [34] Approximating quadratic programming with bound and quadratic constraints
    Ye, YY
    [J]. MATHEMATICAL PROGRAMMING, 1999, 84 (02) : 219 - 226
  • [35] Semidefinite programming relaxations for the quadratic assignment problem
    Zhao, Q
    Karisch, SE
    Rendl, F
    Wolkowicz, H
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 1998, 2 (01) : 71 - 109
  • [36] ZHAO Q, 1996, THESIS U WATERLOO