Paracellular diffusion in Caco-2 cell monolayers: Effect of perturbation on the transport of hydrophilic compounds that vary in charge and size

被引:154
作者
Knipp, GT
Ho, NFH
Barsuhn, CL
Borchardt, RT
机构
[1] UNIV KANSAS,SCH PHARM,DEPT PHARMACEUT CHEM,LAWRENCE,KS 66047
[2] PHARMACIA & UPJOHN INC,DRUG DELIVERY SYST RES,KALAMAZOO,MI 49001
关键词
D O I
10.1021/js9700309
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We applied the principles of molecular-size-restricted diffusion within a negative electrostatic field of force to follow the changes in the aqueous pore radius of tight junctions (TJs) induced by perturbants and the accompanying influence on the permeation of neutral (urea and mannitol), cationic (methylamine acid atenolol), and anionic (formate and lactate) compounds that vary in size. The perturbants included palmitoyl-DL-carnitine (PC), which opens TJs by an unknown Ca++-independent mechanism, and ethyleneglycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), a Ca++ chelator. Mass transfer resistances of the collagen-coated filter support and the aqueous boundary layers were factored out to yield paracellular permeability coefficients (P-P). AS viewed from the P-P values of urea and mannitol, EGTA exhibited insignificant effects on pore size at low concentrations compared with control, and then caused a dramatic opening of the TJs over a narrow concentration range (1.35-1.4 mM). The P-P values for urea and mannitol remained constant at >1.4 mM EGTA. However, PC produced dose-dependent responses from 0 to 0.15 mM that plateaued at >0.15 mM. In general, cations permeated the cellular TJs faster and anions slower than their neutral images. The effects of changes in pore size (4.6 to 14.6 Angstrom in effective radius) on the ability of these solutes to permeate the TJs were analyzed by the Renkin molecular sieving function. These studies established an experimental, theoretical, and quantitative template to assess perturbants of the TJ and define the limits, short of detrimental effects, at which the TJs may be sufficiently perturbed for maximal enhancement of permeation of solutes varying in size and charge.
引用
收藏
页码:1105 / 1110
页数:6
相关论文
共 21 条
[1]   PASSIVE DIFFUSION OF WEAK ORGANIC ELECTROLYTES ACROSS CACO-2 CELL MONOLAYERS - UNCOUPLING THE CONTRIBUTIONS OF HYDRODYNAMIC, TRANSCELLULAR, AND PARACELLULAR BARRIERS [J].
ADSON, A ;
BURTON, PS ;
RAUB, TJ ;
BARSUHN, CL ;
AUDUS, KL ;
HO, NFH .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1995, 84 (10) :1197-1204
[2]   QUANTITATIVE APPROACHES TO DELINEATE PARACELLULAR DIFFUSION IN CULTURED EPITHELIAL-CELL MONOLAYERS [J].
ADSON, A ;
RAUB, TJ ;
BURTON, PS ;
BARSUHN, CL ;
HILGERS, AR ;
AUDUS, KL ;
HO, NFH .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1994, 83 (11) :1529-1536
[3]  
ANDUS KL, 1990, PHARM RES-DORDR, V7, P435
[4]   SELECTIVE PARACELLULAR PERMEABILITY IN 2 MODELS OF INTESTINAL-ABSORPTION - CULTURED MONOLAYERS OF HUMAN INTESTINAL EPITHELIAL-CELLS AND RAT INTESTINAL SEGMENTS [J].
ARTURSSON, P ;
UNGELL, AL ;
LOFROTH, JE .
PHARMACEUTICAL RESEARCH, 1993, 10 (08) :1123-1129
[5]   EPITHELIAL TRANSPORT OF DRUGS IN CELL-CULTURE .1. A MODEL FOR STUDYING THE PASSIVE DIFFUSION OF DRUGS OVER INTESTINAL ABSORPTIVE (CACO-2) CELLS [J].
ARTURSSON, P .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1990, 79 (06) :476-482
[6]   EPITHELIAL TRANSPORT OF DRUGS IN CELL-CULTURE .2. EFFECT OF EXTRACELLULAR CALCIUM-CONCENTRATION ON THE PARACELLULAR TRANSPORT OF DRUGS OF DIFFERENT LIPOPHILICITIES ACROSS MONOLAYERS OF INTESTINAL EPITHELIAL (CACO-2) CELLS [J].
ARTURSSON, P ;
MAGNUSSON, C .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1990, 79 (07) :595-600
[7]  
BURTON PS, 1992, J CONTROL RELEASE, V19, P87, DOI 10.1016/0168-3659(92)90067-2
[8]  
BURTON PS, 1991, ADV DRUG DELIVER REV, V7, P365, DOI 10.1016/0169-409X(91)90014-4
[9]   A MODEL OF HUMAN SMALL INTESTINAL ABSORPTIVE CELLS .1. TRANSPORT BARRIER [J].
COGBURN, JN ;
DONOVAN, MG ;
SCHASTEEN, CS .
PHARMACEUTICAL RESEARCH, 1991, 8 (02) :210-216
[10]   THE INFLUENCE OF PEPTIDE STRUCTURE ON TRANSPORT ACROSS CACO-2 CELLS [J].
CONRADI, RA ;
HILGERS, AR ;
HO, NFH ;
BURTON, PS .
PHARMACEUTICAL RESEARCH, 1991, 8 (12) :1453-1460