Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease

被引:64
作者
Xie, Jun
Bogdanov, Mikhail
Heacock, Philip
Dowhan, William
机构
[1] Univ Texas, Sch Med, Dept Biochem & Mol Biol, Houston, TX 77030 USA
[2] Grad Sch Biomed Sci, Houston, TX 77030 USA
关键词
D O I
10.1074/jbc.M602565200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To determine the specific role lipids play in membrane protein topogenesis in vivo, the orientation with respect to the membrane bilayer of Escherichia coli lactose permease ( LacY) transmembrane (TM) domains and their flanking extramembrane domains was compared after assembly in native membranes and membranes with genetically modified lipid content using the substituted cysteine accessibility method for determining TM domain mapping. LacY assembled in the absence of the major membrane lipid phosphatidylethanolamine ( PE) does not carry out uphill transport of substrate and displays an inverted orientation for the N-terminal six-TM domain helical bundle (Bogdanov, M., Heacock, P. N., and Dowhan, W. (2002) EMBO J. 21, 2107 - 2116). Strikingly, the replacement of PE in vivo by the foreign lipid monoglucosyldiacylglycerol (MGlcDAG), synthesized by the Acholeplasma laidlawii MGlcDAG synthase, restored uphill transport and supported the wild type TM topology of the N-terminal helical bundle of LacY. An interchangeable role in defining membrane protein TM domain orientation and supporting function is played by the two most abundant lipids, PE and MGlcDAG, in Gram-negative and Gram-positive bacteria, respectively. Therefore, these structurally diverse lipids endow the membrane with similar properties necessary for the proper organization of protein domains in LacY that are highly sensitive to lipids as topological determinants.
引用
收藏
页码:19172 / 19178
页数:7
相关论文
共 37 条
[1]   Structure and mechanism of the lactose permease of Escherichia coli [J].
Abramson, J ;
Smirnova, I ;
Kasho, V ;
Verner, G ;
Kaback, HR ;
Iwata, S .
SCIENCE, 2003, 301 (5633) :610-615
[2]   Lactose permease as a paradigm for membrane transport proteins - (Review) [J].
Abramson, J ;
Iwata, S ;
Kaback, HR .
MOLECULAR MEMBRANE BIOLOGY, 2004, 21 (04) :227-236
[3]   Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins [J].
Adamian, L ;
Nanda, V ;
DeGrado, WF ;
Liang, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 59 (03) :496-509
[4]   Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawaii membranes -: Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea [J].
Berg, S ;
Edman, M ;
Li, L ;
Wikström, M ;
Wieslander, Å .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (25) :22056-22063
[5]   A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition [J].
Bogdanov, M ;
Heacock, PN ;
Dowhan, W .
EMBO JOURNAL, 2002, 21 (09) :2107-2116
[6]   Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM™):: Application to lipid-specific membrane protein topogenesis [J].
Bogdanov, M ;
Zhang, W ;
Xie, J ;
Dowhan, W .
METHODS, 2005, 36 (02) :148-171
[7]   A phospholipid acts as a chaperone in assembly of a membrane transport protein [J].
Bogdanov, M ;
Sun, JZ ;
Kaback, HR ;
Dowhan, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (20) :11615-11618
[8]   PHOSPHATIDYLETHANOLAMINE IS REQUIRED FOR IN-VIVO FUNCTION OF THE MEMBRANE-ASSOCIATED LACTOSE PERMEASE OF ESCHERICHIA-COLI [J].
BOGDANOV, M ;
DOWHAN, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (02) :732-739
[9]   LACTOSE PERMEASE OF ESCHERICHIA-COLI CATALYZES ACTIVE BETA-GALACTOSIDE TRANSPORT IN A GRAM-POSITIVE BACTERIUM [J].
BRABETZ, W ;
LIEBL, W ;
SCHLEIFER, KH .
JOURNAL OF BACTERIOLOGY, 1993, 175 (22) :7488-7491
[10]  
CHEN CC, 1984, J BIOL CHEM, V259, P150