Microchip laser-induced breakdown spectroscopy: A preliminary feasibility investigation

被引:70
作者
Gornushkin, IB [1 ]
Amponsah-Manager, K [1 ]
Smith, BW [1 ]
Omenetto, N [1 ]
Winefordner, JD [1 ]
机构
[1] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
关键词
microchip laser; laser-induced plasma; LIBS; laser-induced breakdown spectroscopy;
D O I
10.1366/0003702041389427
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A commercial, 7 muJ/pulse, 550 ps microchip laser is used to induce plasma on Ph, Si, Cu, Fe, Ni, Ti, Zn, Ta, and Mo foils and a Si wafer. The measured plasma lifetime is comparable with the duration of the laser pulse (a few ns). The plasma continuum radiation is low, while some of the strong resonance lines (e.g., Zn 213.86 nm) show self-reversal. Quantitative analysis is possible using non-gated detectors but analytical lines should be chosen with care to avoid reduction in the linear dynamic range. The mass removed (0.5-20 ng/pulse) is sufficient to yield spectra that are detectable with portable grating spectrometers equipped with non-gated, non-intensified detector arrays. The spectrum of Cd is detected with a broadband portable spectrometer (200-950 nm). The combination of the broadband spectrometer and the microchip laser is very promising for material identification, especially in field applications.
引用
收藏
页码:762 / 769
页数:8
相关论文
共 14 条
[1]   Field test of a novel microlaser-based probe for in situ fluorescence sensing of soil contamination [J].
Bloch, J ;
Johnson, B ;
Newbury, N ;
Germaine, J ;
Hemond, H ;
Sinfield, J .
APPLIED SPECTROSCOPY, 1998, 52 (10) :1299-1304
[2]   Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer [J].
Gornushkin, IB ;
Smith, BW ;
Nasajpour, H ;
Winefordner, JD .
ANALYTICAL CHEMISTRY, 1999, 71 (22) :5157-5164
[3]  
HAGLUND RF, 1998, EXPT METHODS PHYS SC, V30, pCH2
[4]  
HWANG GMH, 1998, THESIS MIT CAMBRIDGE
[5]   Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses [J].
Rieger, GW ;
Taschuk, A ;
Tsui, YY ;
Fedosejevs, R .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2003, 58 (03) :497-510
[6]   Laser ablation efficiency of metal samples with UV laser nanosecond pulses [J].
Sallé, B ;
Chaléard, C ;
Detalle, V ;
Lacour, JL ;
Mauchien, P ;
Nouvellon, C ;
Semerok, A .
APPLIED SURFACE SCIENCE, 1999, 138 :302-305
[7]   Femtosecond and picosecond laser microablation:: ablation efficiency and laser microplasma expansion [J].
Sallé, B ;
Gobert, O ;
Meynadier, P ;
Perdrix, M ;
Petite, G ;
Semerok, A .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (Suppl 1) :S381-S383
[8]   Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses [J].
Semerok, A ;
Chaléard, C ;
Detalle, V ;
Lacour, JL ;
Mauchien, P ;
Meynadier, P ;
Nouvellon, C ;
Sallé, B ;
Palianov, P ;
Perdrix, M ;
Petite, G .
APPLIED SURFACE SCIENCE, 1999, 138 :311-314
[9]   Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission [J].
Stratis, DN ;
Eland, KL ;
Angel, SM .
APPLIED SPECTROSCOPY, 2000, 54 (09) :1270-1274
[10]  
WEYL GM, 1989, LASER INDUCED PLASMA, pCH1