Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution

被引:2210
作者
Xie, Junfeng [1 ]
Zhang, Jiajia [1 ]
Li, Shuang [1 ]
Grote, Fabian [2 ,3 ]
Zhang, Xiaodong [1 ]
Zhang, Hao [1 ]
Wang, Ruoxing [1 ]
Lei, Yong [2 ,3 ]
Pan, Bicai [1 ]
Xie, Yi [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Ilmenau Univ Technol, Inst Phys, D-98693 Ilmenau, Germany
[3] Ilmenau Univ Technol, IMN MacroNano ZIK, D-98693 Ilmenau, Germany
基金
中国国家自然科学基金;
关键词
TRANSITION-METAL DICHALCOGENIDES; AUGMENTED-WAVE METHOD; ACTIVE EDGE SITES; ELECTROCATALYTIC MATERIALS; GRAIN-BOUNDARIES; MOLYBDENUM; GRAPHENE; CATALYST; H-2; NANOPARTICLES;
D O I
10.1021/ja408329q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molybdenum disulfide (MoS2) has emerged as a promising electrocatalyst for catalyzing protons to hydrogen via the so-called hydrogen evolution reaction (HER). In order to enhance the HER activity, tremendous effort has been made to engineer MoS2 catalysts with either more active sites or higher conductivity. However, at present, synergistically structural and electronic modulations for HER still remain challenging. In this work, we demonstrate the successfully synergistic regulations of both structural and electronic benefits by controllable disorder engineering and simultaneous oxygen incorporation in MoS2 catalysts, leading to the dramatically enhanced HER activity. The disordered structure can offer abundant unsaturated sulfur atoms as active sites for HER, while the oxygen incorporation can effectively regulate the electronic structure and further improve the intrinsic conductivity. By means of controllable disorder engineering and oxygen incorporation, an optimized catalyst with a moderate degree of disorder was developed, exhibiting superior activity for electrocatalytic hydrogen evolution. In general, the optimized catalyst exhibits onset overpotential as low as 120 mV, accompanied by extremely large cathodic current density and excellent stability. This work will pave a new pathway for improving the electrocatalytic activity by synergistically structural and electronic modulations.
引用
收藏
页码:17881 / 17888
页数:8
相关论文
共 62 条
[1]   Domain (Grain) Boundaries and Evidence of "Twinlike" Structures in Chemically Vapor Deposited Grown Graphene [J].
An, Jinho ;
Voelkl, Edgar ;
Suk, Ji Won ;
Li, Xuesong ;
Magnuson, Carl W. ;
Fu, Lianfeng ;
Tiemeijer, Peter ;
Bischoff, Maarten ;
Freitag, Bert ;
Popova, Elmira ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (04) :2433-2439
[2]  
Andreiadis ES, 2013, NAT CHEM, V5, P48, DOI [10.1038/NCHEM.1481, 10.1038/nchem.1481]
[3]   Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity [J].
Benck, Jesse D. ;
Chen, Zhebo ;
Kuritzky, Leah Y. ;
Forman, Arnold J. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2012, 2 (09) :1916-1923
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Electrocatalytic activity of ordered intermetallic phases for fuel cell applications [J].
Casado-Rivera, E ;
Volpe, DJ ;
Alden, L ;
Lind, C ;
Downie, C ;
Vázquez-Alvarez, T ;
Angelo, ACD ;
DiSalvo, FJ ;
Abruña, HD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (12) :4043-4049
[6]   Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams [J].
Chang, Yung-Huang ;
Lin, Cheng-Te ;
Chen, Tzu-Yin ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Zhang, Wenjing ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2013, 25 (05) :756-760
[7]   Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production [J].
Chen, W. -F. ;
Wang, C. -H. ;
Sasaki, K. ;
Marinkovic, N. ;
Xu, W. ;
Muckerman, J. T. ;
Zhu, Y. ;
Adzic, R. R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :943-951
[8]   Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets [J].
Chen, Wei-Fu ;
Sasaki, Kotaro ;
Ma, Chao ;
Frenkel, Anatoly I. ;
Marinkovic, Nebojsa ;
Muckerman, James T. ;
Zhu, Yimei ;
Adzic, Radoslav R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) :6131-6135
[9]   Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials [J].
Chen, Zhebo ;
Cummins, Dustin ;
Reinecke, Benjamin N. ;
Clark, Ezra ;
Sunkara, Mahendra K. ;
Jaramillo, Thomas F. .
NANO LETTERS, 2011, 11 (10) :4168-4175
[10]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]