Specification analysis of option pricing models based on time-changed Levy processes

被引:151
作者
Huang, JZ [1 ]
Wu, LR
机构
[1] Penn State Univ, Smeal Coll Business, University Pk, PA 16802 USA
[2] CUNY Bernard M Baruch Coll, Zicklin Sch Business, New York, NY 10010 USA
关键词
D O I
10.1111/j.1540-6261.2004.00667.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We analyze the specifications of option pricing models based on time-changed Levy processes. We classify option pricing models based on the structure of the jump component in the underlying return process, the source of stochastic volatility, and the specification of the volatility process itself. Our estimation of a variety of model specifications indicates that to better capture the behavior of the S&P 500 index options, we need to incorporate a high frequency jump component in the return process and generate stochastic volatilities from two different sources, the jump component and the diffusion component.
引用
收藏
页码:1405 / 1439
页数:35
相关论文
共 53 条
[21]  
Carr P., 1999, Journal of Computational Finance, V2, P61
[22]  
CHERNOV M, 1999, NEW CLASS STOCHASTIC
[23]   SUBORDINATED STOCHASTIC-PROCESS MODEL WITH FINITE VARIANCE FOR SPECULATIVE PRICES [J].
CLARK, PK .
ECONOMETRICA, 1973, 41 (01) :135-155
[24]  
CONT R, 2002, QUANTITATIVE FINANCE, V2, P361
[25]   A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES [J].
COX, JC ;
INGERSOLL, JE ;
ROSS, SA .
ECONOMETRICA, 1985, 53 (02) :385-407
[26]   Of smiles and smirks: A term structure perspective [J].
Das, SR ;
Sundaram, RK .
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1999, 34 (02) :211-239
[27]   Transform analysis and asset pricing for affine jump-diffusions [J].
Duffie, D ;
Pan, J ;
Singleton, K .
ECONOMETRICA, 2000, 68 (06) :1343-1376
[28]  
Duffie D, 1996, MATH FINANC, V6, P379, DOI DOI 10.1111/J.1467-9965.1996.TB00123.X
[29]   Implied volatility functions: Empirical tests [J].
Dumas, B ;
Fleming, J ;
Whaley, RE .
JOURNAL OF FINANCE, 1998, 53 (06) :2059-2106
[30]   New insights into smile, mispricing, and value at risk: The hyperbolic model [J].
Eberlein, E ;
Keller, U ;
Prause, K .
JOURNAL OF BUSINESS, 1998, 71 (03) :371-405