Assembly of synthetic locked chromophores with Agrobacterium phytochromes AGP1 and AGP2

被引:48
作者
Inomata, Katsuhiko [1 ]
Noack, Steffi
Hammam, Mostafa A. S.
Khawn, Htoi
Kinoshita, Hideki
Murata, Yasue
Michael, Norbert
Scheerer, Patrick
Krauss, Norbert
Lamparter, Tilman
机构
[1] Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Mat Sci, Kanazawa, Ishikawa 9201192, Japan
[2] Free Univ Berlin, D-14195 Berlin, Germany
[3] Univ Med Berlin, Charite, Inst Biochem, D-10117 Berlin, Germany
关键词
D O I
10.1074/jbc.M603983200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phytochromes are photoreceptors with a bilin chromophore in which light triggers the conversion between the red-absorbing form Pr and the far-red-absorbing form Pfr. Agrobacterium tumefaciens has two phytochromes, Agp1 and Agp2, with antagonistic properties: in darkness, Agp1 converts slowly from Pfr to Pr, whereas Agp2 converts slowly from Pr to Pfr. In a previous study, we have assembled Agp1 with synthetic locked chromophores 15Za, 15Zs, 15Ea, and 15Es in which the C15 = C16 double bond is fixed in either the E or Z configuration and the C14 - C15 single bond is fixed in either the syn(s) or anti ( a) conformation. In the present study, the locked chromophores 5Za and 5Zs were used for assembly with Agp1; in these chromophores, the C4 = C5 double bond is fixed in the Z configuration, and the C5 - C6 single bond is fixed in either the syn or anti conformation. All locked chromophores were also assembled with Agp2. The data showed that in both phytochromes the Pr chromophore adopts a C4 = C5 Z C5 - C6 syn C15 = C16 Z C14 - C15 anti stereochemistry and that in the Pfr chromophore the C15 = C16 double bond has isomerized to the E configuration, whereas the C14 - C15 single bond remains in the anti conformation. Photoconversion shifted the absorption maxima of the 5Zs adducts to shorter wavelengths, whereas the 5Za adducts were shifted to longer wavelengths. Thus, the C5 - C6 single bond of the Pfr chromophore is rather in an anti conformation, supporting the previous suggestion that during photoconversion of phytochromes, a rotation around the ring A-B connecting single bond occurs.
引用
收藏
页码:28162 / 28173
页数:12
相关论文
共 43 条
[1]   Resonance Raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome [J].
Andel, F ;
Lagarias, JC ;
Mathies, RA .
BIOCHEMISTRY, 1996, 35 (50) :15997-16008
[2]   Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues [J].
Andel, F ;
Murphy, JT ;
Haas, JA ;
McDowell, MT ;
van der Hoef, I ;
Lugtenburg, J ;
Lagarias, JC ;
Mathies, RA .
BIOCHEMISTRY, 2000, 39 (10) :2667-2676
[3]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[4]   Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore [J].
Bhoo, SH ;
Davis, SJ ;
Walker, J ;
Karniol, B ;
Vierstra, RD .
NATURE, 2001, 414 (6865) :776-779
[5]   The Aspergillus nidulans phytochrome FphA represses sexual development in red light [J].
Blumenstein, A ;
Vienken, K ;
Tasler, R ;
Purschwitz, J ;
Veith, D ;
Frankenberg-Dinkel, N ;
Fischer, R .
CURRENT BIOLOGY, 2005, 15 (20) :1833-1838
[6]   Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore [J].
Borucki, B ;
von Stetten, D ;
Seibeck, S ;
Lamparter, T ;
Michael, N ;
Mroginski, MA ;
Otto, H ;
Murgida, DH ;
Heyn, MP ;
Hildebrandt, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (40) :34358-34364
[7]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[8]   Mechanism of native oat phytochrome photoreversion: A time-resolved absorption investigation [J].
Chen, EF ;
Lapko, VN ;
Lewis, JW ;
Song, PS ;
Kliger, DS .
BIOCHEMISTRY, 1996, 35 (03) :843-850
[9]  
Delano WL., 2002, The PyMOL Molecular Graphics System
[10]   Cis-trans isomerization of organic molecules and biomolecules: Implications and applications [J].
Dugave, C ;
Demange, L .
CHEMICAL REVIEWS, 2003, 103 (07) :2475-2532