Exercise-induced modulation of antioxidant Defense

被引:240
作者
Ji, LL
机构
[1] Univ Wisconsin, Dept Kinesiol, Madison, WI 53706 USA
[2] Univ Wisconsin, Inst Aging, Madison, WI 53706 USA
来源
INCREASING HEALTHY LIFE SPAN: CONVENTIONAL MEASURES AND SLOWING THE INNATE AGING PROCESS | 2002年 / 959卷
关键词
mobility; skeletal muscle; oxidative stress; sarcopenia; reactive oxygen species;
D O I
10.1111/j.1749-6632.2002.tb02085.x
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Maintaining mobility is a critical element for the quality of life. Skeletal muscle, the primary organ for locomotion, undergoes age-associated deterioration in size, structure, and function. Recent research suggests that oxidative stress is an important etiology for sarcopenia. The level of oxidative stress imposed on aging muscle is influenced by two fundamental biological processes: the increased generation of reactive oxygen species (ROS) and age-associated changes in antioxidant defense. It appears that despite increased ROS production, aging muscle has a decreased gene expression of antioxidant enzymes possibly due to a diminished ability for cell signaling. A major benefit of nonexhaustive exercise is to induce a mild oxidative stress that stimulates the expression of certain antioxidant enzymes. This is mediated by the activation of redox-sensitive signaling pathways. For example, gene expression of muscle mitochondrial (Mn) superoxide dismutase is enhanced after an acute bout of exercise preceded by an elevated level of NF-kappaB and AP-1 binding. An increase in de novo protein synthesis of an antioxidant enzyme usually requires repeated bouts of exercise. Aging does not abolish but seems to attenuate training adaptations of antioxidant enzymes. Thus, for senescent muscle, training should be assisted with supplementation of exogenous antioxidants to research the optimal level of defense.
引用
收藏
页码:82 / 92
页数:11
相关论文
共 60 条
[1]   Oxidative stress and gene regulation [J].
Allen, RG ;
Tresini, M .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (03) :463-499
[2]   Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle [J].
Aronson, D ;
Violan, MA ;
Dufresne, SD ;
Zangen, D ;
Fielding, RA ;
Goodyear, LJ .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (06) :1251-1257
[3]   Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise [J].
Balagopal, P ;
Schimke, JC ;
Ades, P ;
Adey, D ;
Nair, KS .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 280 (02) :E203-E208
[4]   Aging and acute exercise enhance free radical generation in rat skeletal muscle [J].
Bejma, J ;
Ji, LL .
JOURNAL OF APPLIED PHYSIOLOGY, 1999, 87 (01) :465-470
[5]   MYOCARDIAL GLUTATHIONE DEPLETION IMPAIRS RECOVERY AFTER SHORT PERIODS OF ISCHEMIA [J].
BLAUSTEIN, A ;
DENEKE, SM ;
STOLZ, RI ;
BAXTER, D ;
HEALEY, N ;
FANBURG, BL .
CIRCULATION, 1989, 80 (05) :1449-1457
[6]   Eccentric exercise markedly increases c-Jun NH2-terminal kinase activity in human skeletal muscle [J].
Boppart, MD ;
Aronson, D ;
Gibson, L ;
Roubenoff, R ;
Abad, LW ;
Bean, J ;
Goodyear, LJ ;
Fielding, RA .
JOURNAL OF APPLIED PHYSIOLOGY, 1999, 87 (05) :1668-1673
[7]  
Cannon J. G., 1994, EXERCISE OXYGEN TOXI, P447
[8]   THE ROLE OF GLUTATHIONE STATUS IN THE PROTECTION AGAINST ISCHEMIC AND REPERFUSION DAMAGE - EFFECTS OF N-ACETYL CYSTEINE [J].
CECONI, C ;
CURELLO, S ;
CARGNONI, A ;
FERRARI, R ;
ALBERTINI, A ;
VISIOLI, O .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1988, 20 (01) :5-13
[9]   REGULATION OF CELLULAR GLUTATHIONE [J].
DENEKE, SM ;
FANBURG, BL .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (04) :L163-L173
[10]   Oxidants, oxidative stress and the biology of ageing [J].
Finkel, T ;
Holbrook, NJ .
NATURE, 2000, 408 (6809) :239-247