Fitting CRISPR-associated Cas3 into the Helicase Family Tree

被引:48
作者
Jackson, Ryan N. [1 ]
Lavin, Matthew [2 ]
Carter, Joshua [1 ]
Wiedenheft, Blake [1 ]
机构
[1] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59718 USA
[2] Montana State Univ, Dept Plant Sci & Plant Pathol, Bozeman, MT 59718 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
IN-VITRO RECONSTITUTION; STRUCTURAL BASIS; RNA RECOGNITION; IMMUNE-SYSTEM; DNA HELICASE; TRANSLOCATION; ACTIVATION; MECHANISM; INTERFERENCE; DEGRADATION;
D O I
10.1016/j.sbi.2014.01.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Helicases utilize NTPs to modulate their binding to nucleic acids and many of these enzymes also unwind DNA or RNA duplexes in an NTP-dependent fashion. These proteins are phylogeneticaliy related but functionally diverse, with essential roles in virtually all aspects of nucleic acid metabolism. A new class of helicases associated with RNA-guided adaptive immune systems in bacteria and archaea has recently been identified. Prokaryotes acquire resistance to invading genetic parasites by integrating short fragments of foreign nucleic acids into repetitive loci in the host chromosome known as CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats). CRISPR-associated gene 3 (cas3) encodes a conserved helicase protein that is essential for phage defense. Here we review recent advances in Cas3 biology, and provide a new phylogenetic framework that positions Cas3 in the helicase family tree. We anticipate that this Cas3 phylogeny will guide future biochemical and structural studies.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 55 条
[1]   ProtTest: selection of best-fit models of protein evolution [J].
Abascal, F ;
Zardoya, R ;
Posada, D .
BIOINFORMATICS, 2005, 21 (09) :2104-2105
[2]   A conserved phenylalanine of motif IV in superfamily 2 helicases is required for cooperative, ATP-dependent binding of RNA substrates in DEAD-box proteins [J].
Banroques, Josette ;
Cordin, Olivier ;
Doere, Monique ;
Linder, Patrick ;
Tanner, N. Kyle .
MOLECULAR AND CELLULAR BIOLOGY, 2008, 28 (10) :3359-3371
[3]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[4]   Structural basis for DNA duplex separation by a superfamily-2 helicase [J].
Buettner, Katharina ;
Nehring, Sebastian ;
Hopfner, Karl-Peter .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2007, 14 (07) :647-652
[5]   Structure, function and regulation of spliceosomal RNA helicases [J].
Cordin, Olivier ;
Hahn, Daniela ;
Beggs, Jean D. .
CURRENT OPINION IN CELL BIOLOGY, 2012, 24 (03) :431-438
[6]   The structural basis for MCM2-7 helicase activation by GINS and Cdc45 [J].
Costa, Alessandro ;
Ilves, Ivar ;
Tamberg, Nele ;
Petojevic, Tatjana ;
Nogales, Eva ;
Botchan, Michael R. ;
Berger, James M. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2011, 18 (04) :471-U110
[7]   Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system [J].
Datsenko, Kirill A. ;
Pougach, Ksenia ;
Tikhonov, Anton ;
Wanner, Barry L. ;
Severinov, Konstantin ;
Semenova, Ekaterina .
NATURE COMMUNICATIONS, 2012, 3
[8]  
Duijn Ev, 2012, MOL CELL PROTEOMICS, V11, P1430
[9]   Mechanism of DNA translocation in a replicative hexameric helicase [J].
Enemark, Eric J. ;
Joshua-Tor, Leemor .
NATURE, 2006, 442 (7100) :270-275
[10]   On helicases and other motor proteins [J].
Enernark, Eric J. ;
Joshua-Tor, Leernor .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (02) :243-257