NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin

被引:106
作者
Igamberdiev, AU [1 ]
Seregélyes, C [1 ]
Manac'h, N [1 ]
Hill, RD [1 ]
机构
[1] Univ Manitoba, Dept Plant Sci, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
hemoglobin; hypoxia; Medicago; NADH/ NAD ratio; nitric oxide; NO dioxygenase;
D O I
10.1007/s00425-003-1192-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Transgenic alfalfa (Medicago sativa L.) root cultures expressing sense and antisense barley (Hordeum vulgare L.) hemoglobin were examined for their ability to metabolize NO. Extracts from lines overexpressing hemoglobin had approximately twice the NO conversion rate of either control or antisense lines under normoxic conditions. Only the control line showed a significant increase in the rate of NO degradation when placed under anaerobic conditions. The decline in NO was dependent on the presence of reduced pyridine nucleotide, with the NADH-dependent rate being about 2.5 times faster than the NADPH-dependent rate. Most of the activity was found in the cytosolic fraction of the extracts, while only small amounts were found in the cell wall, mitochondria, and 105,000-g membrane fraction. The NADH-dependent NO conversion exhibited a broad pH optimum in the range 7-8 and a strong affinity to NADH and NADPH (K-m 3 muM for both). It was sensitive to diphenylene iodonium, an inhibitor of flavoproteins. The activity was strongly reduced by applying antibodies raised against recombinant barley hemoglobin. Extracts of Escherichia coli overexpressing barley hemoglobin showed a 4-fold higher rate of NO metabolism as compared to non-transformed cells. The NADH/NAD and NADPH/NADP ratios were higher in lines underexpressing hemoglobin, indicating that the presence of hemoglobin has an effect on these ratios. They were increased under hypoxia and antimycin A treatment. Alfalfa root extracts exhibited methemoglobin reductase activity, using either cytochrome c or recombinant barley hemoglobin as substrates. There was a correspondence between NO degradation and nitrate formation. The activity was eluted from a Superose 12 column as a single peak with molecular weight of 35+/-4 kDa, which corresponds to the size of the hemoglobin dimer. The results are consistent with an NO dioxygenase-like activity, with hemoglobin acting in concert with a flavoprotein, to metabolize NO to nitrate utilizing NADH as the electron donor.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 25 条
[1]   Rice hemoglobins - Gene cloning, analysis, and O-2-binding kinetics of a recombinant protein synthesized in Escherichia coli [J].
ArredondoPeter, R ;
Hargrove, MS ;
Sarath, G ;
Moran, JF ;
Lohrman, J ;
Olson, JS ;
Klucas, RV .
PLANT PHYSIOLOGY, 1997, 115 (03) :1259-1266
[2]   Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pretreatment [J].
Bouny, JM ;
Saglio, PH .
PLANT PHYSIOLOGY, 1996, 111 (01) :187-194
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   THE CONVERSION OF NITRITE TO NITROGEN OXIDE(S) BY THE CONSTITUTIVE NAD(P)H-NITRATE REDUCTASE ENZYME FROM SOYBEAN [J].
DEAN, JV ;
HARPER, JE .
PLANT PHYSIOLOGY, 1988, 88 (02) :389-395
[5]   Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress [J].
Dordas, C ;
Hasinoff, BB ;
Igamberdiev, AU ;
Manac'h, N ;
Rivoal, J ;
Hill, RD .
PLANT JOURNAL, 2003, 35 (06) :763-770
[6]   Plant haemoglobins, nitric oxide and hypoxic stress [J].
Dordas, C ;
Rivoal, J ;
Hill, RD .
ANNALS OF BOTANY, 2003, 91 (02) :173-178
[7]   Haemoglobin expression in germinating barley [J].
Duff, SMG ;
Guy, PA ;
Nie, XZ ;
Durnin, DC ;
Hill, RD .
SEED SCIENCE RESEARCH, 1998, 8 (04) :431-436
[8]   Expression purification, and properties of recombinant barley (Hordeum sp.) hemoglobin - Optical spectra and reactions with gaseous ligands [J].
Duff, SMG ;
Wittenberg, JB ;
Hill, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (27) :16746-16752
[9]   Nitric-oxide dioxygenase activity and function of flavohemoglobins - Sensitivity to nitric oxide and carbon monoxide inhibition [J].
Gardner, PR ;
Gardner, AM ;
Martin, LA ;
Dou, Y ;
Li, TS ;
Olson, JS ;
Zhu, H ;
Riggs, AF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (41) :31581-31587
[10]   Nitric oxide dioxygenase: An enzymic function for flavohemoglobin [J].
Gardner, PR ;
Gardner, AM ;
Martin, LA ;
Salzman, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10378-10383