Analysis of effects of the state of charge on the formation and growth of the deposit layer on graphite electrode of pouch type lithium ion polymer batteries

被引:28
作者
Agubra, Victor A. [1 ]
Fergus, Jeffrey W. [1 ]
Fu, Rujian [2 ]
Choe, Song-Yul [2 ]
机构
[1] Auburn Univ, Mat Res & Educ Ctr, Wilmore Labs 275, Auburn, AL 36849 USA
[2] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
关键词
Lithium-ion cell; Graphite electrode; Electrolyte decomposition; Capacity fade; LIPF6-BASED ELECTROLYTES; CAPACITY FADE; ANODE; DECOMPOSITION; TEMPERATURE; REDUCTION; CELL;
D O I
10.1016/j.jpowsour.2014.07.126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The breakdown of the protective solid electrolyte interface (SEI) layer formed on lithium ion battery anodes can initiate further electrolyte decomposition and the formation of non-uniform and electronically insulating reaction products on the surface of the graphite particles. The results from this study indicate that raising both the lower and upper ends of the state of charge (SOC) increased the rate of the electrolyte decomposition side reaction to form a thick deposit surface film. This deposit layer contained lithium that can no longer participate in the reversible electrochemical reaction. In addition, the high cycling potential coupled with high charge rate created a large lithium concentration gradient that led to some particles detachment from the current collector and isolation in the electrochemical process. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 220
页数:8
相关论文
共 25 条
[1]   A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance [J].
Aurbach, D ;
Moshkovich, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (08) :2629-2639
[2]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[3]   An EIS study of the anode Li/PEO-LiTFSI of a Li polymer battery [J].
Bouchet, R ;
Lascaud, S ;
Rosso, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1385-A1389
[4]   Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2 [J].
Choi, SS ;
Lim, HS .
JOURNAL OF POWER SOURCES, 2002, 111 (01) :130-136
[5]   Surface film formation on electrodes in a LiCoO2/graphite cell:: A step by step XPS study [J].
Dedryvere, R. ;
Martinez, H. ;
Leroy, S. ;
Lemordant, D. ;
Bonhomme, F. ;
Biensan, P. ;
Gonbeau, D. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :462-468
[6]   Live scanning electron microscope observations of dendritic growth in lithium/polymer cells [J].
Dollé, M ;
Sannier, L ;
Beaudoin, B ;
Trentin, M ;
Tarascon, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (12) :A286-A289
[7]   Studies on charging lithium-ion cells at low temperatures [J].
Fan, J ;
Tan, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (06) :A1081-A1092
[8]   Electrode/Electrolyte Interfacial Behaviors of LiCoO2/Mixed Graphite Li-Ion Cells during Operation and Storage [J].
Huang, Chenghuan ;
Zhuang, Shuxin ;
Tu, Feiyue .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (02) :A376-A382
[9]   Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries [J].
Jiang, Jiuchun ;
Shi, Wei ;
Zheng, Jianming ;
Zuo, Pengjian ;
Xiao, Jie ;
Chen, Xilin ;
Xu, Wu ;
Zhang, Ji-Guang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A336-A341
[10]   SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells [J].
Joho, F ;
Novák, P .
ELECTROCHIMICA ACTA, 2000, 45 (21) :3589-3599