We here report on a detailed experimental study whose goal is to investigate spontaneous crack propagation in bonded and intact materials subjected to quasi-static far-field tensile loading. The cracks nucleate from a tiny circular hole and are triggered by an exploding wire. They subsequently propagate under the action of a constant far-field load. Dynamic photoelasticity in conjunction with high speed photography is used to capture the real-time photoelastic fringe patterns (isochromatics) associated with crack propagation. Dynamic stress intensity factors of propagating cracks are determined and the results are successfully compared with Broberg's classical model of self-similar mode-I crack growth. (c) 2006 Elsevier Ltd. All rights reserved.