A mixed integer nonlinear programming (MINLP) supply chain optimisation framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK

被引:49
作者
Akgul, O. [1 ]
Mac Dowell, N. [2 ,3 ]
Papageorgiou, L. G. [1 ]
Shah, N. [2 ]
机构
[1] UCL, Dept Chem Engn, Ctr Proc Syst Engn, London WC1E 7JE, England
[2] Univ London Imperial Coll Sci Technol & Med, Ctr Proc Syst Engn, Dept Chem Engn, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Ctr Environm Policy, London SW7 2AZ, England
关键词
BECCS; CO2; capture; Biomass co-firing; IECM; Mixed integer optimisation; Multi-scale modelling; LARGE-SCALE BIOENERGY; CO2; CAPTURE; TRACE-ELEMENTS; WOOD-BARK; DESIGN; COCOMBUSTION; COAL; OPERATION; BEHAVIOR; DIOXIDE;
D O I
10.1016/j.ijggc.2014.06.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The co-firing of biomass and fossil fuels in conjunction with CO2 capture and storage (CCS) has the potential to lead to the generation of relatively inexpensive carbon negative electricity. In this work, we use a mixed integer nonlinear programming (MINLP) model of carbon negative energy generation in the UK to examine the potential for existing power generation assets to act as a carbon sink as opposed to a carbon source. Via a Pareto front analysis, we examine the technical and economic compromises implicit in transitioning from a dedicated fossil fuel only to a carbon negative electricity generation network. A price of approximately 30-50 pound/t CO2 appears sufficient to incentivise a reduction of carbon intensity of electricity from a base case of 800 kg/MWh to less than 100 kg/MWh. However, the price required to incentivise the generation of carbon negative electricity is in the region of 120-175 pound/t of CO2. In order for biomass to energy with CCS (BECCS) to be commercially attractive, the power plants in question must operate at a high load factor and high rates of CO2 capture. The relative fuel cost is a key determinant of required carbon price. Increasing biomass availability also reduces the cost of generating carbon negative electricity; however one must be cognisant of land use change implications. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 60 条
[1]   An optimisation framework for a hybrid first/second generation bioethanol supply chain [J].
Akgul, Ozlem ;
Shah, Nilay ;
Papageorgiou, Lazaros G. .
COMPUTERS & CHEMICAL ENGINEERING, 2012, 42 :101-114
[2]   Optimization-Based Approaches for Bioethanol Supply Chains [J].
Akgul, Ozlem ;
Zamboni, Andrea ;
Bezzo, Fabrizio ;
Shah, Nilay ;
Papageorgiou, Lazaros G. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (09) :4927-4938
[3]   Design and operation of a future hydrogen supply chain - Snapshot model [J].
Almansoori, A. ;
Shah, N. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2006, 84 (A6) :423-438
[4]  
[Anonymous], DIG UK EN STAT
[5]   Flexible operation of solvent regeneration systems for CO2 capture processes using advanced control techniques: Towards operational cost minimisation [J].
Arce, A. ;
Mac Dowell, N. ;
Shah, N. ;
Vega, L. F. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 11 :236-250
[6]   A model for biodiesel supply chain: A case study in Iran [J].
Avami, Akram .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (06) :4196-4203
[7]   Dynamic modelling, validation and analysis of post-combustion chemical absorption CO2 capture plant [J].
Biliyok, Chechet ;
Lawal, Adekola ;
Wang, Meihong ;
Seibert, Frank .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 :428-445
[8]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[9]   Facility Location and Supply Chain Optimization for a Biorefinery [J].
Bowling, Ian M. ;
Maria Ponce-Ortega, Jose ;
El-Halwagi, Mahmoud M. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (10) :6276-6286
[10]   Why large-scale bioenergy production on marginal land is unfeasible: A conceptual partial equilibrium analysis [J].
Bryngelsson, David K. ;
Lindgren, Kristian .
ENERGY POLICY, 2013, 55 :454-466