Phase-field model for binary alloys

被引:932
作者
Kim, SG [1 ]
Kim, WT
Suzuki, T
机构
[1] Kunsan Natl Univ, RASOM, Kunsan 573701, South Korea
[2] Kunsan Natl Univ, Dept Mat Sci & Engn, Kunsan 573701, South Korea
[3] Chongju Univ, Ctr Noncrystalline Mat, Chongju 360764, South Korea
[4] Chongju Univ, Dept Phys, Chongju 360764, South Korea
[5] Univ Tokyo, Dept Mat Engn, Tokyo 113, Japan
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevE.60.7186
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a phase-field model (PFM) for solidification in binary alloys, which is found from the phase-field model for a pure material by direct comparison of the variables for a pure material solidification and alloy solidification. The model appears to be equivalent with the Wheeler-Boettinger-McFadden (WBM) model [A.A. Wheeler, W. J. Boettinger, and G. B. McFadden, Phys. Rev. A 45, 7424 (1992)], but has a different definition of the free energy density for interfacial region. An extra potential originated from the free energy density definition in the WBM model disappears in this model. At a dilute solution limit, the model is reduced to the Tiaden et al. model [Physica D 115, 73 (1998)] for a binary alloy. A relationship between the phase-field mobility and the interface kinetics coefficient is derived at a thin-interface limit condition under an assumption of negligible diffusivity in the solid phase. For a dilute alloy, a steady-state solution of the concentration profile across the diffuse interface is obtained as a function of the interface velocity and the resultant partition coefficient is compared with the previous solute trapping model. For one dimensional steady-state solidification, where the classical sharp-interface model is exactly soluble, we perform numerical simulations of the phase-field model: Ar low interface velocity, the simulated results from the thin-interface PFM are in excellent agreement with the exact solutions. As the partition coefficient becomes close to unit at high interface velocities, whereas, the sharp-interface PFM yields the correct answer. [S1063-651X(99)08712-7].
引用
收藏
页码:7186 / 7197
页数:12
相关论文
共 30 条
[1]   Solute trapping and solute drag in a phase-field model of rapid solidification [J].
Ahmad, NA ;
Wheeler, AA ;
Boettinger, WJ ;
McFadden, GB .
PHYSICAL REVIEW E, 1998, 58 (03) :3436-3450
[2]   Interface attachment kinetics in alloy solidification [J].
Aziz, MJ .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1996, 27 (03) :671-686
[3]   CONTINUOUS GROWTH-MODEL FOR INTERFACE MOTION DURING ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
KAPLAN, T .
ACTA METALLURGICA, 1988, 36 (08) :2335-2347
[4]   MODEL FOR SOLUTE REDISTRIBUTION DURING RAPID SOLIDIFICATION [J].
AZIZ, MJ .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (02) :1158-1168
[5]   PHASE-FIELD AND SHARP-INTERFACE ALLOY MODELS [J].
CAGINALP, G ;
XIE, W .
PHYSICAL REVIEW E, 1993, 48 (03) :1897-1909
[6]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896
[7]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[8]   DIFFUSE INTERFACE MODEL OF DIFFUSION-LIMITED CRYSTAL-GROWTH [J].
COLLINS, JB ;
LEVINE, H .
PHYSICAL REVIEW B, 1985, 31 (09) :6119-6122
[9]   Interface dynamics, instabilities, and solute bands in rapid directional solidification [J].
Conti, M .
PHYSICAL REVIEW E, 1998, 58 (02) :2071-2078
[10]  
DIEPERS HI, UNPUB