Testing of dynamic multileaf collimation

被引:132
作者
Chui, CS
Spirou, S
LoSasso, T
机构
[1] Department of Medical Physics, Mem. Sloan-Kettering Cancer Center, New York
关键词
dynamic multileaf collimators; quality assurance; intensity-modulated fields;
D O I
10.1118/1.597699
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
It has been shown that intensity-modulated fields have the potential to deliver optimum dose distributions, i.e., high dose uniformity in the target and lower doses in the surrounding critical organs. One way to deliver such fields is by using dynamic multileaf collimation (DMLC). This capability is already available in research mode on some treatment machines. While much effort has been devoted to developing algorithms for DMLC, the mechanical reliability of this new treatment delivery mode has not been fully studied. In this work, we report a series of tests designed to investigate the mechanical aspects of DMLC and their implications on dosimetry. Specifically, these tests were designed to examine (1) the stability of leaf speed, (2) the effect of lateral disequilibrium on dose profiles between adjacent leaves, (3) the significance of acceleration and deceleration of leaf motion, (4) the effect of positional accuracy and rounded-end of the leaves, and (5) create a simple test pattern that may serve as a basis for routine quality assurance checks. Results of these tests are presented. The implications on dosimetry and consideration for the design of leaf motion are discussed. (C) 1996 American Association of Physicists in Medicine.
引用
收藏
页码:635 / 641
页数:7
相关论文
共 27 条
[1]  
AJNESJO A, 1987, ACTA ONCOL, V26, P49
[2]  
BARTH NH, 1990, INT J RADIAT ONCOL, V18, P425, DOI 10.1016/0360-3016(90)90111-V
[3]   METHODS OF IMAGE-RECONSTRUCTION FROM PROJECTIONS APPLIED TO CONFORMATION RADIOTHERAPY [J].
BORTFELD, T ;
BURKELBACH, J ;
BOESECKE, R ;
SCHLEGEL, W .
PHYSICS IN MEDICINE AND BIOLOGY, 1990, 35 (10) :1423-1434
[4]   A PHOTON DOSE DISTRIBUTION MODEL EMPLOYING CONVOLUTION CALCULATIONS [J].
BOYER, A ;
MOK, E .
MEDICAL PHYSICS, 1985, 12 (02) :169-177
[5]   OPTIMIZATION OF STATIONARY AND MOVING BEAM RADIATION-THERAPY TECHNIQUES [J].
BRAHME, A .
RADIOTHERAPY AND ONCOLOGY, 1988, 12 (02) :129-140
[6]   THE INFLUENCE OF SCATTER ON THE DESIGN OF OPTIMIZED INTENSITY MODULATIONS [J].
CHEN, Z ;
WANG, XH ;
BORTFELD, T ;
MOHAN, R ;
REINSTEIN, L .
MEDICAL PHYSICS, 1995, 22 (11) :1727-1733
[7]   DOSE CALCULATION FOR PHOTON BEAMS WITH INTENSITY MODULATION GENERATED BY DYNAMIC JAW OR MULTILEAF COLLIMATIONS [J].
CHUI, CS ;
LOSASSO, T ;
SPIROU, S .
MEDICAL PHYSICS, 1994, 21 (08) :1237-1244
[8]   THE GENERATION OF INTENSITY-MODULATED FIELDS FOR CONFORMAL RADIOTHERAPY BY DYNAMIC COLLIMATION [J].
CONVERY, DJ ;
ROSENBLOOM, ME .
PHYSICS IN MEDICINE AND BIOLOGY, 1992, 37 (06) :1359-1374
[9]   PERIPHERAL DOSE FROM MEGAVOLT BEAMS [J].
FRAASS, BA ;
VANDEGEIJN, J .
MEDICAL PHYSICS, 1983, 10 (06) :809-818
[10]   PHOTON-BEAM CONVOLUTION USING POLYENERGETIC ENERGY DEPOSITION KERNELS [J].
HOBAN, PW ;
MURRAY, DC ;
ROUND, WH .
PHYSICS IN MEDICINE AND BIOLOGY, 1994, 39 (04) :669-685