Initial development of the DIII-D snowflake divertor control

被引:10
作者
Kolemen, E. [1 ]
Vail, P. J. [1 ]
Makowski, M. A. [2 ]
Allen, S. L. [2 ]
Bray, B. D. [3 ]
Fenstermacher, M. E. [2 ]
Humphreys, D. A. [3 ]
Hyatt, A. W. [3 ]
Lasnier, C. J. [2 ]
Leonard, A. W. [3 ]
McLean, A. G. [2 ]
Maingi, R. [1 ]
Nazikian, R. [1 ]
Petrie, T. W. [3 ]
Soukhanovskii, V. A. [2 ]
Unterberg, E. A. [4 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Gen Atom, San Diego, CA 92186 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国能源部;
关键词
advanced divertor; divertor; control; snowflake; DIII-D;
D O I
10.1088/1741-4326/aab0d3
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII-D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasma and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII-D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad-Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII-D in scenarios such as the double-null advanced tokamak. The SFD resulted in a 2.5x reduction in the peak heat flux for many energy confinement times (2-3 s) without any adverse effects on core plasma performance.
引用
收藏
页数:10
相关论文
共 26 条
[1]   INVESTIGATION OF ADVANCED DIVERTOR MAGNETIC CONFIGURATION FOR DEMO TOKAMAK REACTOR [J].
Asakura, Nobuyuki ;
Shinya, Kichiro ;
Tobita, Kenji ;
Hoshino, Kazuo ;
Shimizu, Katsuhiro ;
Utoh, Hiroyasu ;
Someya, Youji ;
Nakamura, Makoto ;
Ohno, Noriyashu ;
Kobayashi, Masahiro ;
Tanaka, Hirohiko .
FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (1T) :70-75
[2]   Feedback for physicists: A tutorial essay on control [J].
Bechhoefer, J .
REVIEWS OF MODERN PHYSICS, 2005, 77 (03) :783-836
[3]   Plasma boundary shape control and realt-ime equilibrium reconstruction on NSTX-U [J].
Boyer, M. D. ;
Battaglia, D. J. ;
Mueller, D. ;
Eidietis, N. ;
Erickson, K. ;
Ferron, J. ;
Gates, D. A. ;
Gerhardt, S. ;
Johnson, R. ;
Kolemen, E. ;
Menard, J. ;
Myers, C. E. ;
Sabbagh, S. A. ;
Scotti, F. ;
Vail, P. .
NUCLEAR FUSION, 2018, 58 (03)
[4]   EAST alternative magnetic configurations: modelling and first experiments [J].
Calabro, G. ;
Xiao, B. J. ;
Chen, S. L. ;
Duan, Y. M. ;
Guo, Y. ;
Li, J. G. ;
Liu, L. ;
Luo, Z. P. ;
Wang, L. ;
Xu, J. ;
Zhang, B. ;
Albanese, R. ;
Ambrosino, R. ;
Crisanti, F. ;
Ridolfini, V. Pericoli ;
Villone, F. ;
Viola, B. ;
Barbato, L. ;
De Magistris, M. ;
De Tommasi, G. ;
Giovannozzi, E. ;
Mastrostefano, S. ;
Minucci, S. ;
Pironti, A. ;
Ramogida, G. ;
Tuccillo, A. A. ;
Zagorski, R. .
NUCLEAR FUSION, 2015, 55 (08)
[5]   Real time equilibrium reconstruction for tokamak discharge control [J].
Ferron, JR ;
Walker, ML ;
Lag, LL ;
St John, HE ;
Humphreys, DA ;
Leuer, JA .
NUCLEAR FUSION, 1998, 38 (07) :1055-1066
[6]   Progress in the physics basis of a Fusion Nuclear Science Facility based on the Advanced Tokamak concept [J].
Garofalo, A. M. ;
Chan, V. S. ;
Canik, J. M. ;
Sawan, M. E. ;
Choi, M. ;
Humphreys, D. A. ;
Lao, L. L. ;
Prater, R. ;
Stangeby, P. C. ;
St John, H. E. ;
Taylor, T. S. ;
Turnbull, A. D. ;
Wong, C. P. C. .
NUCLEAR FUSION, 2014, 54 (07)
[7]   Progress in the ITER physics basis - Preface [J].
Ikeda, K. .
NUCLEAR FUSION, 2007, 47 (06)
[8]   Plasma modelling results and shape control improvements for NSTX [J].
Kolemen, E. ;
Gates, D. A. ;
Gerhardt, S. ;
Kaita, R. ;
Kugel, H. ;
Mueller, D. ;
Rowley, C. ;
Soukhanovskii, V. .
NUCLEAR FUSION, 2011, 51 (11)
[9]   Strike point control for the National Spherical Torus Experiment (NSTX) [J].
Kolemen, E. ;
Gates, D. A. ;
Rowley, C. W. ;
Kasdin, N. J. ;
Kallman, J. ;
Gerhardt, S. ;
Soukhanovskii, V. ;
Mueller, D. .
NUCLEAR FUSION, 2010, 50 (10)
[10]   Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake [J].
Kotschenreuther, Mike ;
Valanju, Prashant ;
Covele, Brent ;
Mahajan, Swadesh .
PHYSICS OF PLASMAS, 2013, 20 (10)