Eutectic limit for the growth of carbon nanotubes from a thin iron film by chemical vapor deposition of cyclohexane

被引:24
作者
Grueneis, A.
Kramberger, C.
Grimm, D.
Gemming, T.
Ruemmeli, M. H.
Barreiro, A.
Ayala, P.
Pichler, T.
Schaman, Ch.
Kuzmany, H.
Schumann, J.
Buechner, B.
机构
[1] IFW Dresden, D-01171 Dresden, Germany
[2] Univ Autonoma Barcelona, Inst Catala Nanotecnol, E-08193 Bellaterra, Spain
[3] Univ Autonoma Barcelona, Ctr Nacl Microelect, E-08193 Bellaterra, Spain
[4] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio de Janeiro, Brazil
[5] Inst Mat Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1016/j.cplett.2006.05.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotubes are grown from a nanometer thin iron film as catalyst by chemical vapor deposition of cyclohexane. We observe growth of carbon nanotubes in a temperature window between 720 and 845 degrees C. The low synthesis temperature of 720 degrees C results from the catalyst thickness which lowers the iron-carbon eutectic temperature as compared to bulk iron. At this temperature very little amorphous carbon is deposited on the substrate due to the absence of self pyrolysis of cyclohexane. This points out the importance of the interplay between catalyst thickness and carbon source. The synthesized nanotubes are investigated by resonance Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:301 / 305
页数:5
相关论文
共 19 条
  • [1] Plasma-induced alignment of carbon nanotubes
    Bower, C
    Zhu, W
    Jin, SH
    Zhou, O
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (06) : 830 - 832
  • [2] Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth
    Delzeit, L
    Chen, B
    Cassell, A
    Stevens, R
    Nguyen, C
    Meyyappan, M
    [J]. CHEMICAL PHYSICS LETTERS, 2001, 348 (5-6) : 368 - 374
  • [3] Ways towards the scaleable integration of carbon nanotubes into silicon based technology
    Duesberg, GS
    Graham, AR
    Kreupl, F
    Liebau, M
    Seidel, R
    Unger, E
    Hoenlein, W
    [J]. DIAMOND AND RELATED MATERIALS, 2004, 13 (02) : 354 - 361
  • [4] Growth of isolated carbon nanotubes with lithographically defined diameter and location
    Duesberg, GS
    Graham, AP
    Liebau, M
    Seidel, R
    Unger, E
    Kreupl, F
    Hoenlein, W
    [J]. NANO LETTERS, 2003, 3 (02) : 257 - 259
  • [5] Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects
    Fantini, C
    Jorio, A
    Souza, M
    Strano, MS
    Dresselhaus, MS
    Pimenta, MA
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (14) : 147406 - 1
  • [6] GRUNEIS A, UNPUB CARBON
  • [7] Liquid as a required catalyst phase for carbon single-walled nanotube growth
    Harutyunyan, AR
    Tokune, T
    Mora, E
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (05)
  • [8] Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes
    Hata, K
    Futaba, DN
    Mizuno, K
    Namai, T
    Yumura, M
    Iijima, S
    [J]. SCIENCE, 2004, 306 (5700) : 1362 - 1364
  • [9] Surface diffusion:: The low activation energy path for nanotube growth -: art. no. 036101
    Hofmann, S
    Csányi, G
    Ferrari, AC
    Payne, MC
    Robertson, J
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (03)
  • [10] Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition
    Hofmann, S
    Ducati, C
    Robertson, J
    Kleinsorge, B
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (01) : 135 - 137