Reuniting the contrasting functions of H2A.Z

被引:82
作者
Guillemette, Benoit [1 ]
Gaudreau, Luc [1 ]
机构
[1] Univ Sherbrooke, Fac Sci, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada
来源
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE | 2006年 / 84卷 / 04期
关键词
histone variant; chromatin; gene expression; nucleosome; transcription;
D O I
10.1139/O06-077
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It is now well established that cells modify chromatin to set transcriptionally active or inactive regions. Such control of chromatin structure is essential for proper development of organisms. In addition to the growing number of histone post-translational modifications, cells can exchange canonical histones with different variants that can directly or indirectly change chromatin structure. Moreover, enzymatic complexes that can exchange specific histone variants within the nucleosome have now been identified. One such variant, H2A.Z, has recently been the focus of many studies. H2A.Z is highly conserved in evolution and has many different functions, while defining both active and inactive chromatin in different contexts. Advanced molecular techniques, such as genome-wide binding assays (chromatin immunoprecipitation on chip) have recently given researchers many clues as to how H2A.Z is targeted to chromatin and how it affects nuclear functions. We wish to review the recent literature and summarize our understanding of the mechanisms and functions of H2A.Z.
引用
收藏
页码:528 / 535
页数:8
相关论文
共 64 条
[1]   Characterization of the stability and folding of H2A.Z chromatin particles -: Implications for transcriptional activation [J].
Abbott, DW ;
Ivanova, VS ;
Wang, XY ;
Bonner, WM ;
Ausió, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :41945-41949
[2]   H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions [J].
Adam, M ;
Robert, F ;
Larochelle, M ;
Gaudreau, L .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (18) :6270-6279
[3]  
ALLIS CD, 2001, TETRAHYMENA THERMOPH, V20, P609
[4]   Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae [J].
Babiarz, JE ;
Halley, JE ;
Rine, J .
GENES & DEVELOPMENT, 2006, 20 (06) :700-710
[5]   Global approaches to chromatin [J].
Bernstein, BE ;
Schreiber, SL .
CHEMISTRY & BIOLOGY, 2002, 9 (11) :1167-1173
[6]   Removal of promoter nucleosomes by disassembly rather than sliding in vivo [J].
Boeger, H ;
Griesenbeck, J ;
Strattan, JS ;
Kornberg, RD .
MOLECULAR CELL, 2004, 14 (05) :667-673
[7]   Nucleosomes unfold completely at a transcriptionally active promoter [J].
Boeger, H ;
Griesenbeck, J ;
Strattan, JS ;
Kornberg, RD .
MOLECULAR CELL, 2003, 11 (06) :1587-1598
[8]   The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken [J].
Bruce, K ;
Myers, FA ;
Mantouvalou, E ;
Lefevre, P ;
Greaves, I ;
Bonifer, C ;
Tremethick, DJ ;
Thorne, AW ;
Crane-Robinson, C .
NUCLEIC ACIDS RESEARCH, 2005, 33 (17) :5633-5639
[9]   The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes [J].
Cai, Y ;
Jin, JJ ;
Florens, L ;
Swanson, SK ;
Kusch, T ;
Li, B ;
Workman, JL ;
Washburn, MP ;
Conaway, RC ;
Conaway, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (14) :13665-13670
[10]   The p400 E1A-associated protein is a novel component of the p53→p21 senescence pathway [J].
Chan, HM ;
Narita, M ;
Lowe, SW ;
Livingstone, DM .
GENES & DEVELOPMENT, 2005, 19 (02) :196-201