RETRACTED: Phosphorylation of MNAR promotes estrogen activation of phosphatidylinositol 3-kinase (Retracted Article. See vol 30, pg 1568, 2010)

被引:46
作者
Greger, James G.
Fursov, Natalie
Cooch, Neil
McLarney, Sean
Freedman, Leonard P.
Edwards, Dean P.
Cheskis, Boris J.
机构
[1] Wyeth Res, Womens Hlth & Musculoskeletal Biol, Nucl Receptors, Collegeville, PA 19426 USA
[2] Baylor Coll Med, Dept Mol & Cell Biol, Houston, TX 77030 USA
关键词
D O I
10.1128/MCB.01732-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Estrogen actions are mediated by a complex interface of direct control of gene expression (the so-called "genomic action") and by regulation of cell signaling/phosphorylation cascades, referred to as the "nongenomic," or extranuclear, action. We have previously described the identification of MNAR (modulator of nongenomic action of estrogen receptor) as a novel scaffold protein that regulates estrogen receptor alpha (ER alpha) activation of cSrc. In this study, we have investigated the role of MNAR in 17 beta-estradiol (E2)-induced activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Consistent with our previous results, a direct correlation was established between MNAR expression levels and E2-induced activation of PI3 and Akt kinases. Endogenous MNAR, ER alpha, cSrc, and p85, the regulatory subunit of PI3 kinase, interacted in MCF7 cells treated with E2. The interaction between p85 and MNAR required activation of cSrc and MNAR phosphorylation on Tyr 920. Consequently, the mutation of this tyrosine to alanine (Y920A) abrogated the interaction between MNAR and p85 and the E2-induced activation of the PI3K/Akt pathway, which was required for the E2-induced protection of MCF7 cells from apoptosis. Nonetheless, the Y920A mutant potentiated the E2-induced activation of the Src/MAPK pathway and MCF7 cell proliferation, as observed with the wild-type MNAR. These results provide new and important insights into the molecular mechanisms of E2-induced regulation of cell proliferation and apoptosis.
引用
收藏
页码:1904 / 1913
页数:10
相关论文
共 35 条
[1]   Functional interactions between the estrogen receptor coactivator PELP1/MNAR and retinoblastoma protein [J].
Balasenthil, S ;
Vadlamudi, RK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (24) :22119-22127
[2]   Characterization of the interactions of estrogen receptor and MNAR in the activation of cSrc [J].
Barletta, F ;
Wong, CW ;
McNally, C ;
Komm, BS ;
Katzenellenbogen, B ;
Cheskis, BJ .
MOLECULAR ENDOCRINOLOGY, 2004, 18 (05) :1096-1108
[3]   Receptor mechanisms of rapid extranuclear signalling initiated by steroid hormones [J].
Boonyaratanakornkit, V ;
Edwards, DP .
ESSAYS IN BIOCHEMISTRY: NUCLEAR RECEPTOR SUPERFAMILY, 2004, 40 :105-120
[4]   Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases [J].
Boonyaratanakornkit, V ;
Scott, MP ;
Ribon, V ;
Sherman, L ;
Anderson, SM ;
Maller, JL ;
Miller, WT ;
Edwards, DP .
MOLECULAR CELL, 2001, 8 (02) :269-280
[5]   Oestrogen-mediated suppression of tumour necrosis factor alpha-induced apoptosis in MCF-7 cells: subversion of Bcl-2 by anti-oestrogens [J].
Burow, ME ;
Weldon, CB ;
Tang, Y ;
McLachlan, JA ;
Beckman, BS .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2001, 78 (05) :409-418
[6]   Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α -: A new model for anti-estrogen resistance [J].
Campbell, RA ;
Bhat-Nakshatri, P ;
Patel, NM ;
Constantinidou, D ;
Ali, S ;
Nakshatri, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :9817-9824
[7]   PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells [J].
Castoria, G ;
Migliaccio, A ;
Bilancio, A ;
Di Domenico, M ;
de Falco, A ;
Lombardi, M ;
Fiorentino, R ;
Varricchio, L ;
Barone, MV ;
Auricchio, F .
EMBO JOURNAL, 2001, 20 (21) :6050-6059
[8]  
Cato A.C., 2002, SCI STKE, V2002, pre9, DOI [DOI 10.1126/STKE.2002.138.RE9, 10.1126/stke.2002.138.re9]
[9]   Regulation of cell signalling cascades by steroid hormones [J].
Cheskis, BJ .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 93 (01) :20-27
[10]   Regulation of signal transduction pathways by estrogen and progesterone [J].
Edwards, DP .
ANNUAL REVIEW OF PHYSIOLOGY, 2005, 67 :335-376