Surface-integral formulation for electromagnetic scattering in spheroidal coordinates

被引:16
作者
Kahnert, FM
Stamnes, JJ
Stamnes, K
机构
[1] Norwegian Inst Air Res, N-2027 Kjeller, Norway
[2] Univ Bergen, Dept Phys, N-5007 Bergen, Norway
[3] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA
关键词
D O I
10.1016/S0022-4073(02)00075-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive surface-integral expressions for the Q matrices in spheroidal coordinates that allow us to compute the T matrix in spheroidal coordinates. This approach combines the advantages of the null-field method (also referred to as the extended boundary condition method) with those of the separation of variables method. For spheroidal particles we obtain explicit Q matrix expressions that display the expected symmetry properties and yield correct results in the spherical limit. Compared to surface-integral expressions for spheroids in spherical coordinates, our results are considerably simpler because the integrands do not contain radial functions. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:61 / 78
页数:18
相关论文
共 41 条
[1]   ELECTROMAGNETIC SCATTERING FROM DIELECTRICALLY COATED AXISYMMETRICAL OBJECTS USING THE GENERALIZED POINT-MATCHING TECHNIQUE .1. THEORETICAL FORMULATION [J].
ALRIZZO, HM ;
TRANQUILLA, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 119 (02) :342-355
[2]   ELECTROMAGNETIC-WAVE SCATTERING BY HIGHLY ELONGATED AND GEOMETRICALLY COMPOSITE OBJECTS OF LARGE-SIZE PARAMETERS - THE GENERALIZED MULTIPOLE TECHNIQUE [J].
ALRIZZO, HM ;
TRANQUILLA, JM .
APPLIED OPTICS, 1995, 34 (18) :3502-3521
[3]   LIGHT-SCATTERING BY RANDOMLY ORIENTED SPHEROIDAL PARTICLES [J].
ASANO, S ;
SATO, M .
APPLIED OPTICS, 1980, 19 (06) :962-974
[4]   LIGHT-SCATTERING BY A SPHEROIDAL PARTICLE [J].
ASANO, S ;
YAMAMOTO, G .
APPLIED OPTICS, 1975, 14 (01) :29-49
[5]   SCATTERING OF ELECTROMAGNETIC-WAVES BY ARBITRARILY SHAPED DIELECTRIC BODIES [J].
BARBER, P ;
YEH, C .
APPLIED OPTICS, 1975, 14 (12) :2864-2872
[6]  
BARDER P, 1973, THESIS U CALIFORNIA
[7]  
CIRIC IR, 1998, JQSRT, V63, P131
[8]   New method for computing expansion coefficients for spheroidal functions [J].
Eide, HA ;
Stamnes, JJ ;
Stamnes, K ;
Schulz, FM .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1999, 63 (2-6) :191-203
[9]  
Farafonov V. G., 1984, Radio Engineering and Electronic Physics, V29, P39
[10]  
Flammer C., 1957, SPHEROIDAL WAVE FUNC