Molecular Simulation of Electric Double-Layer Capacitors Based on Carbon Nanotube Forests

被引:122
作者
Yang, Lu [2 ]
Fishbine, Brian H. [2 ]
Migliori, Albert [2 ]
Pratt, Lawrence R. [1 ]
机构
[1] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
ELECTROCHEMICAL CAPACITORS; FORCE-FIELD; SINGLE;
D O I
10.1021/ja9044554
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Described here are the first simulations of electric double-layer capacitors based on carbon nanotube forests modeled fully at a molecular level. The computations determine single-electrode capacitances in the neighborhood of 80 F/g, in agreement with experimental capacitances of electric edouble-layer capacitors utilizing carbon nanotube forests or carbide-derived carbons as electrode material. The capacitance increases modestly with the decrease of the pore size through radii greater than 1 nm, which is consistent with recent experiments on carbide-derived carbon electrodes. Because the various factors included in these simulations are precisely defined, these simulation data will help to disentangle distinct physical chemical factors that contribute to the performance of these materials, e.g., pore geometry, variable filling of the pores, pseudocapacitance, and electronic characteristics of the nanotubes.
引用
收藏
页码:12373 / 12376
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 2007, BAS EN SCI WORKSH EL
[2]  
Case D.A., 2006, AMBER 9
[3]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI [10.1126/science.1132195, 10.1126/science/1132195]
[4]   Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (18) :3392-3395
[5]   Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cations-force-field proposal and validation [J].
de Andrade, J ;
Böes, ES ;
Stassen, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (51) :13344-13351
[6]   Carbon nanotube-metal-oxide nanocomposites:: Microstructure, electrical conductivity and mechanical properties [J].
Flahaut, E ;
Peigney, A ;
Laurent, C ;
Marlière, C ;
Chastel, F ;
Rousset, A .
ACTA MATERIALIA, 2000, 48 (14) :3803-3812
[7]   84% Catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach [J].
Futaba, DN ;
Hata, K ;
Namai, T ;
Yamada, T ;
Mizuno, K ;
Hayamizu, Y ;
Yumura, M ;
Iijima, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (15) :8035-8038
[8]   Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J].
Futaba, Don N. ;
Hata, Kenji ;
Yamada, Takeo ;
Hiraoka, Tatsuki ;
Hayamizu, Yuhei ;
Kakudate, Yozo ;
Tanaike, Osamu ;
Hatori, Hiroaki ;
Yumura, Motoo ;
Iijima, Sumio .
NATURE MATERIALS, 2006, 5 (12) :987-994
[9]   Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes [J].
Hata, K ;
Futaba, DN ;
Mizuno, K ;
Namai, T ;
Yumura, M ;
Iijima, S .
SCIENCE, 2004, 306 (5700) :1362-1364
[10]  
HATORI H, 2006, N4 CARBON NANOTUBES