A general heuristic for choosing the regularization parameter in ill-posed problems

被引:83
作者
Hanke, M [1 ]
Raus, T [1 ]
机构
[1] TARTU STATE UNIV,DEPT MATH,EE-2400 TARTU,ESTONIA
关键词
ill-posed problems; Tikhonov regularization; iterative regularization; conjugate gradients; a posteriori parameter choice;
D O I
10.1137/0917062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a variety of regularization methods, including Tikhonov regularization, Landweber iteration, nu-method iteration, and the method of conjugate gradients, rye develop and illustrate a heuristic for choosing an appropriate regularization parameter. Our choice requires no particular a priori knowledge, since the parameter is determined from computable information only. However, if an estimation for the noise level in the data is at hand, then this can be used as a justification. In contrast to known parameter choice heuristics, a posteriori error estimates for the computed approximations can be given. Numerical examples show that the new parameter choice rules are promising alternatives to known parameter choice rules.
引用
收藏
页码:956 / 972
页数:17
相关论文
共 22 条
[1]  
BAKUSHINSKII AB, 1984, USSR COMP MATH MATH+, V24, P181, DOI 10.1016/0041-5553(84)90253-2
[2]  
BRAKHAGE H, 1987, INVERSE ILL POSED PR, P165
[3]   A POSTERIORI PARAMETER CHOICE FOR GENERAL REGULARIZATION METHODS FOR SOLVING LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
GFRERER, H .
APPLIED NUMERICAL MATHEMATICS, 1988, 4 (05) :395-417
[4]  
Engl HW, 1993, SURV MATH IND, V3, P71
[5]  
GFRERER H, 1987, MATH COMPUT, V49, P507, DOI 10.1090/S0025-5718-1987-0906185-4
[6]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[7]  
Hanke M., 1993, Surveys on Mathematics for Industry, V3, P253
[8]   ACCELERATED LANDWEBER ITERATIONS FOR THE SOLUTION OF ILL-POSED EQUATIONS [J].
HANKE, M .
NUMERISCHE MATHEMATIK, 1991, 60 (03) :341-373
[9]   AN OPTIMAL STOPPING RULE FOR THE NU-METHOD FOR SOLVING ILL-POSED PROBLEMS, USING CHRISTOFFEL FUNCTIONS [J].
HANKE, M ;
ENGL, HW .
JOURNAL OF APPROXIMATION THEORY, 1994, 79 (01) :89-108
[10]   AN EPSILON-FREE A POSTERIORI STOPPING RULE FOR CERTAIN ITERATIVE REGULARIZATION METHODS [J].
HANKE, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :1208-1228