Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer

被引:128
作者
Pootrakul, Llana
Datar, Ram H.
Shi, Shan-Rong
Cai, Jie
Hawes, Debra
Groshen, Susan G.
Lee, Amy S.
Cote, Richard J.
机构
[1] Univ So Calif, Kenneth Norris Jr Comprehens Canc Ctr, Dept Pathol, Keck Sch Med, Los Angeles, CA 90033 USA
[2] Univ So Calif, Dept Prevent Med, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Biochem, Los Angeles, CA 90033 USA
[4] Univ So Calif, Dept Urol, Los Angeles, CA 90033 USA
关键词
D O I
10.1158/1078-0432.CCR-06-0133
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Induction of molecular chaperone Grp78 (78-kDa glucose-regulated protein) occurs in stress conditions that often characterize tumor microenvironments. We investigated the role of Grp78 in prostate cancer progression and the development of castration resistance, where cancer cells continue to survive despite the stress of an androgen-starved environment. Experimental Design: Immunohistochemistry was done to examine Grp78 expression in 219 prostate cancers from patients with pathologic stage T3N0M0 disease [androgen ablation naive (untreated) and androgen ablation exposed (treated)] and castration-resistant prostate cancer. Classification of tumors was based on intensity of Grp78 cytoplasmic immunoreactivity and percentage of immunoreactive tumor cells. The associations of Grp78 expression with prostate cancer recurrence (clinical and/or serum prostate-specific antigen) and survival were examined in the untreated stage T3N0M0 group. Grp78 expression was also analyzed in the androgen-dependent LNCaP and castration-resistant C42B cell lines. Results: The percentage of tumor cells expressing Grp78 was strongly associated with castration-resistant status (P = 0.005). Increased Grp78 expression was consistently associated with greater risk of prostate cancer recurrence and worse overall survival in patients who had not undergone prior hormonal manipulation. Grp78 expression was also increased in the castration-resistant LNCaP-derived cell line C42B and in LNCaP cells grown in: androgen-deprived conditions compared with LNCaP cells grown in androgen-rich media. Conclusion: Our findings show that up-regulation of Grp78 is associated with the development of castration resistance, possibly in part by augmenting cell survival as previously suggested, and may serve as an important prognostic indicator of recurrence in a subset of patients with T3N0M0 disease.
引用
收藏
页码:5987 / 5993
页数:7
相关论文
共 43 条
[1]  
[Anonymous], UROLOGIC PATHOLOGY
[2]   Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands [J].
Arap, MA ;
Lahdenranta, J ;
Mintz, PJ ;
Hajitou, A ;
Sarkis, AS ;
Arap, W ;
Pasqualini, R .
CANCER CELL, 2004, 6 (03) :275-284
[3]  
Bauer KD, 2000, CLIN CANCER RES, V6, P3552
[4]   Protein expression profiles in human breast ductal carcinoma and histologically normal tissue [J].
Bini, L ;
Magi, B ;
Marzocchi, B ;
Arcuri, F ;
Tripodi, S ;
Cintorino, M ;
Sanchez, JC ;
Frutiger, S ;
Hughes, G ;
Pallini, V ;
Hochstrasser, DF ;
Tosi, P .
ELECTROPHORESIS, 1997, 18 (15) :2832-2841
[5]  
Cornford PA, 2000, CANCER RES, V60, P7099
[6]  
Craft N, 1999, CANCER RES, V59, P5030
[7]   A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase [J].
Craft, N ;
Shostak, Y ;
Carey, M ;
Sawyers, CL .
NATURE MEDICINE, 1999, 5 (03) :280-285
[8]   Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment [J].
Dong, DZ ;
Ko, BC ;
Baumeister, P ;
Swenson, S ;
Costa, F ;
Markland, F ;
Stiles, C ;
Patterson, JB ;
Bates, SE ;
Lee, AS .
CANCER RESEARCH, 2005, 65 (13) :5785-5791
[9]   REDUCTION OF ENDOGENOUS GRP78 LEVELS IMPROVES SECRETION OF A HETEROLOGOUS PROTEIN IN CHO CELLS [J].
DORNER, AJ ;
KRANE, MG ;
KAUFMAN, RJ .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (10) :4063-4070
[10]   The development of androgen-independent prostate cancer [J].
Feldman, BJ ;
Feldman, D .
NATURE REVIEWS CANCER, 2001, 1 (01) :34-45