The 1.30 Å resolution structure of the Bacillus subtilis chorismate mutase catalytic homotrimer

被引:32
作者
Ladner, JE
Reddy, P
Davis, A
Tordova, M
Howard, AJ
Gilliland, GL
机构
[1] Natl Inst Stand & Technol, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA
[2] Univ Maryland, Inst Biotechnol, Rockville, MD 20850 USA
[3] Natl Inst Stand & Technol, Div Biotechnol, Gaithersburg, MD 20899 USA
[4] IIT, Biol Chem & Phys Sci Dept, Chicago, IL 60616 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY | 2000年 / 56卷
关键词
D O I
10.1107/S0907444900004625
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure of the Bacillus subtilis chorismate mutase, an enzyme of the aromatic amino acids biosynthetic pathway, was determined to 1.30 Angstrom resolution. The structure of the homotrimer was determined by molecular replacement using orthorhombic crystals of space group P2(1)2(1)2(1) with unit-cell parameters a = 52.2, b = 83.8, c = 86.0 Angstrom. The ABC trimer of the monoclinic crystal structure [Chook et al. (1994), J. Mol. Biol. 240, 476-500] was used as the starting model. The final coordinates are composed of three complete polypeptide chains of 127 amino-acid residues. In addition, there are nine sulfate ions, five glycerol molecules and 424 water molecules clearly visible in the structure. This structure was refined with aniosotropic temperature factors, has excellent geometry and a crystallographic R factor of 0.169 with an R-free of 0.236. The three active sites of the macromolecule are at the subunit interfaces, with residues from two subunits contributing to each site. This orthorhombic crystal form was grown using ammonium sulfate as the precipitant; glycerol was used as a cryoprotectant during data collection. A glycerol molecule and sulfate ion in each of the active sites was found mimicking a transition-state analog. In this structure, the C-terminal tails of the subunits of the trimer are hydrogen bonded to residues of the active site of neighboring trimers in the crystal and thus cross-link the molecules in the crystal lattice.
引用
收藏
页码:673 / 683
页数:11
相关论文
共 38 条
[1]   REARRANGEMENT OF CHORISMATE TO PREPHENATE - USE OF CHORISMATE MUTASE INHIBITORS TO DEFINE TRANSITION-STATE STRUCTURE [J].
ANDREWS, PR ;
CAIN, EN ;
RIZZARDO, E ;
SMITH, GD .
BIOCHEMISTRY, 1977, 16 (22) :4848-4852
[2]   A FAST ALGORITHM FOR RENDERING SPACE-FILLING MOLECULE PICTURES [J].
BACON, D ;
ANDERSON, WF .
JOURNAL OF MOLECULAR GRAPHICS, 1988, 6 (04) :219-220
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   AN INHIBITOR OF CHORISMATE MUTASE RESEMBLING THE TRANSITION-STATE CONFORMATION [J].
BARTLETT, PA ;
JOHNSON, CR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (25) :7792-7793
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   CRYSTAL-STRUCTURES OF THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS-SUBTILIS AND ITS COMPLEX WITH A TRANSITION-STATE ANALOG [J].
CHOOK, YM ;
KE, HM ;
LIPSCOMB, WN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (18) :8600-8603
[7]   THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS-SUBTILIS - STRUCTURE DETERMINATION OF CHORISMATE MUTASE AND ITS COMPLEXES WITH A TRANSITION-STATE ANALOG AND PREPHENATE, AND IMPLICATIONS FOR THE MECHANISM OF THE ENZYMATIC-REACTION [J].
CHOOK, YM ;
GRAY, JV ;
KE, HM ;
LIPSCOMB, WN .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 240 (05) :476-500
[8]   ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions [J].
Cohen, GH .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1997, 30 :1160-1161
[9]   THE UNCATALYZED CLAISEN REARRANGEMENT OF CHORISMATE TO PREPHENATE PREFERS A TRANSITION-STATE OF CHAIRLIKE GEOMETRY [J].
COPLEY, SD ;
KNOWLES, JR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (18) :5306-5308
[10]  
DAVIDSON BE, 1987, METHOD ENZYMOL, V142, P440