Rate of blunt impact loading affects changes in retropatellar cartilage and underlying bone in the rabbit patella

被引:85
作者
Ewers, BJ [1 ]
Jayaraman, VM [1 ]
Banglmaier, RF [1 ]
Haut, RC [1 ]
机构
[1] Michigan State Univ, Coll Osteopath Med, Orthopaed Biomech Lab, E Lansing, MI 48824 USA
关键词
cartilage mechanics; cartilage; trauma; osteoarthritis;
D O I
10.1016/S0021-9290(02)00019-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Our laboratory has developed a small animal model using Giant Flemish rabbits to examine chronic degradative changes in joint tissues following a blunt impact. Historically, we observe surface fissuring and decreases in the elastic modulus of retropatellar. with thickening of the underlying subchondral bone. Previous studies resulted in load insults that peaked in similar to 5 ms, cartilage along while loads that occur during automotive accidents or heavy exercise can produce longer rise times. The objective of the current study was to examine the influence of blunt impact loading rate using our established model. We hypothesized that the extent of fissuring and softening of retropatellar cartilage following impact would not be significantly different for a high (5 ms to peak) versus low (50 ms to peak) rate of loading experiment. Eight animals were impacted with a high rate of loading blunt impact, while ten animals were subjected to the same impact load at a low rate of loading. An additional eight animals served as a control population. All animals were sacrificed 12 months post-impact. The study yielded unexpected results for the first hypothesis. The high rate of loading experiments generated more surface Fissuring of the retropatellar cartilage than the low rate of loading experiments. However, the degree of softening was similar for the two rates, which supported the second hypothesis. Furthermore, the study documented more thickening of bone underlying retropatellar cartilage following the high versus the low rate of loading experiments. The current study suggested that chronic injury mechanisms may be highly dependent on the rate of impact loading. These data could become extremely relevant in the development of high-velocity "safety" devices, such as knee air bags, that are needed to help position an unbelted occupant in an automobile crash. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:747 / 755
页数:9
相关论文
共 42 条
[1]   A DYNAMIC FINITE-ELEMENT ANALYSIS OF IMPULSIVE LOADING OF THE EXTENSION-SPLINTED RABBIT KNEE [J].
ANDERSON, DD ;
BROWN, TD ;
YANG, KH ;
RADIN, EL .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1990, 112 (02) :119-128
[2]  
ARMSTRONG CG, 1984, J BIOMECH ENG-T ASME, V106, P165, DOI 10.1115/1.3138475
[3]   AN ASYMPTOTIC SOLUTION FOR THE CONTACT OF 2 BIPHASIC CARTILAGE LAYERS [J].
ATESHIAN, GA ;
LAI, WM ;
ZHU, WB ;
MOW, VC .
JOURNAL OF BIOMECHANICS, 1994, 27 (11) :1347-1360
[4]  
ATKINSON P, 1999, P 45 ANN ORTH RES SO
[5]   A method to increase the sensitive range of pressure sensitive film [J].
Atkinson, PJ ;
Newberry, WN ;
Atkinson, TS ;
Haut, RC .
JOURNAL OF BIOMECHANICS, 1998, 31 (09) :855-859
[6]   Impact-induced fissuring of articular cartilage: An investigation of failure criteria [J].
Atkinson, TS ;
Haut, RC ;
Altiero, NJ .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1998, 120 (02) :181-187
[7]   FINITE-ELEMENT STUDIES OF SOME JUXTARTICULAR STRESS CHANGES DUE TO LOCALIZED SUBCHONDRAL STIFFENING [J].
BROWN, TD ;
RADIN, EL ;
MARTIN, RB ;
BURR, DB .
JOURNAL OF BIOMECHANICS, 1984, 17 (01) :11-&
[8]  
Burr DB, 1998, OSTEOARTHRITIS, P144
[9]  
Cheng R, 1984, P 28 STAPP CAR CRASH, P101
[10]   STRESS-RELAXATION BEHAVIOR OF TRABECULAR BONE SPECIMENS [J].
DELIGIANNI, DD ;
MARIS, A ;
MISSIRLIS, YF .
JOURNAL OF BIOMECHANICS, 1994, 27 (12) :1469-1476