The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences

被引:249
作者
Chapin, F. Stuart, III [1 ]
McFarland, Jack [1 ]
McGuire, A. David [2 ]
Euskirchen, Eugenie S. [1 ]
Ruess, Roger W. [1 ]
Kielland, Knut [1 ]
机构
[1] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA
[2] Univ Alaska Fairbanks, US Geol Survey, Alaska Cooperat Fish & Wildlife Unit, Fairbanks, AK 99775 USA
关键词
carbon cycle; climate change; decomposition; heterotrophic respiration; mycorrhizas; net ecosystem production; net primary production; roots; soil carbon; DISSOLVED ORGANIC-CARBON; NET PRIMARY PRODUCTION; CO2; FLUX; NITROGEN MINERALIZATION; TEMPERATURE SENSITIVITY; TERRESTRIAL ECOSYSTEMS; CONCEPTUAL-FRAMEWORK; MICROBIAL BIOMASS; LITTER QUALITY; CLIMATE-CHANGE;
D O I
10.1111/j.1365-2745.2009.01529.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and/or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.
引用
收藏
页码:840 / 850
页数:11
相关论文
共 115 条
[1]   Changes in intrasystem N cycling from N2-fixing shrub encroachment in grassland:: multiple positive feedbacks [J].
Baer, SG ;
Church, JM ;
Williard, KWJ ;
Groninger, JW .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2006, 115 (1-4) :174-182
[2]   Combined climate and carbon-cycle effects of large-scale deforestation [J].
Bala, G. ;
Caldeira, K. ;
Wickett, M. ;
Phillips, T. J. ;
Lobell, D. B. ;
Delire, C. ;
Mirin, A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (16) :6550-6555
[3]   Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future [J].
Baldocchi, DD .
GLOBAL CHANGE BIOLOGY, 2003, 9 (04) :479-492
[4]   Litter quality in a north European transect versus carbon storage potential [J].
Berg, B ;
Meentemeyer, V .
PLANT AND SOIL, 2002, 242 (01) :83-92
[5]   Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies [J].
Blagodatskaya, E. V. ;
Blagodatsky, S. A. ;
Anderson, T.-H. ;
Kuzyakov, Y. .
APPLIED SOIL ECOLOGY, 2007, 37 (1-2) :95-105
[6]  
BLAGODATSKAYA EV, 1998, SOIL BIOL BIOCHEM, V35, P955
[7]   Forests and climate change: Forcings, feedbacks, and the climate benefits of forests [J].
Bonan, Gordon B. .
SCIENCE, 2008, 320 (5882) :1444-1449
[8]   A global relationship between the heterotrophic and autotrophic components of soil respiration? [J].
Bond-Lamberty, B ;
Wang, CK ;
Gower, ST .
GLOBAL CHANGE BIOLOGY, 2004, 10 (10) :1756-1766
[9]   Root exudates regulate soil fungal community composition and diversty [J].
Broeckling, Corey D. ;
Broz, Amanda K. ;
Bergelson, Joy ;
Manter, Daniel K. ;
Vivanco, Jorge M. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (03) :738-744
[10]   Observed and predicted responses of plant growth to climate across Canada [J].
Bunn, AG ;
Goetz, SJ ;
Fiske, GJ .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (16) :1-4