Quantum annealing by the path-integral Monte Carlo method:: The two-dimensional random Ising model -: art. no. 094203

被引:111
作者
Martonák, R
Santoro, GE
Tosatti, E
机构
[1] Swiss Ctr Sci Comp, CH-6928 Manno, Switzerland
[2] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland
[3] Scuola Int Super Studi Avanzati, SISSA, Trieste, Italy
[4] INFM, UdR SISSA, Trieste, Italy
[5] Int Ctr Theoret Phys, Trieste, Italy
[6] Slovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Dept Phys, Bratislava 91219, Slovakia
来源
PHYSICAL REVIEW B | 2002年 / 66卷 / 09期
关键词
D O I
10.1103/PhysRevB.66.094203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum annealing was recently found experimentally in a disordered spin-1/2 magnet to be more effective than its classical, thermal counterpart. We use the random two-dimensional Ising model as a test example and perform on it both classical and quantum (path-integral) Monte Carlo annealing. A systematic study of the dependence of the final residual energy on the annealing Monte Carlo time quantitatively demonstrates the superiority of quantum relative to classical annealing in this system. In order to determine the parameter regime for optimal efficiency of the quantum annealing procedure we explore a range of values of Trotter slice number P and temperature T. This identifies two different regimes of freezing with respect to efficiency of the algorithm, and leads to useful guidelines for the optimal choice of quantum annealing parameters.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 34 条
[31]   RELATIONSHIP BETWEEN D-DIMENSIONAL QUANTAL SPIN SYSTEMS AND (D+1)-DIMENSIONAL ISING SYSTEMS - EQUIVALENCE, CRITICAL EXPONENTS AND SYSTEMATIC APPROXIMANTS OF PARTITION-FUNCTION AND SPIN CORRELATIONS [J].
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (05) :1454-1469
[32]  
SUZUKI M, 1987, QUANTUM MONTE CARLO
[33]   NONUNIVERSAL CRITICAL-DYNAMICS IN MONTE-CARLO SIMULATIONS [J].
SWENDSEN, RH ;
WANG, JS .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :86-88
[34]   Monte Carlo study of the interacting self-avoiding walk model in three dimensions [J].
Tesi, MC ;
vanRensburg, EJJ ;
Orlandini, E ;
Whittington, SG .
JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (1-2) :155-181