Finite-time convergent gradient flows with applications to network consensus

被引:691
作者
Cortés, Jorge [1 ]
机构
[1] Univ Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
gradient flows; nonsmooth analysis; finite-time convergence; network consensus; multi-agent systems;
D O I
10.1016/j.automatica.2006.06.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces the normalized and signed gradient dynamical systems associated with a differentiable function. Extending recent results on nonsmooth stability analysis, we characterize their asymptotic convergence properties and identify conditions that guarantee finite-time convergence. We discuss the application of the results to consensus problems in multi-agent systems and show how the proposed nonsmooth gradient flows achieve consensus in finite time. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1993 / 2000
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 1988, DIFFERENTIAL EQUATIO
[2]  
Bacciotti A., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P361, DOI 10.1051/cocv:1999113
[3]  
Bertsekas D., 2015, Parallel and distributed computation: numerical methods
[4]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[5]  
Clarke F, 2004, LECT NOTES CONTR INF, V301, P267
[6]  
Clarke F.H., 1983, CANADIAN MATH SOC SE
[7]   Feedback stabilization and Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Rifford, L ;
Stern, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :25-48
[8]   ON THE STABILIZATION IN FINITE-TIME OF LOCALLY CONTROLLABLE SYSTEMS BY MEANS OF CONTINUOUS TIME-VARYING FEEDBACK LAW [J].
CORON, JM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (03) :804-833
[9]   Spatially-distributed coverage optimization and control with limited-range interactions [J].
Cortés, J ;
Martínez, S ;
Bullo, F .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2005, 11 (04) :691-719
[10]   Coordination and geometric optimization via distributed dynamical systems [J].
Cortés, J ;
Bullo, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) :1543-1574