Nanobiomaterial applications in orthopedics

被引:247
作者
Christenson, Elizabeth M.
Anseth, Kristi S.
van den Beucken, Leroen J. J. P.
Chan, Casey K.
Ercan, Batur
Jansen, John A.
Laurencin, Cato T.
Li, Wan-Ju
Murugan, Ramalingam
Nair, Lakshmi S.
Ramakrishna, Seeram
Tuan, Rocky S.
Webster, Thomas J.
Mikos, Antonios G.
机构
[1] Rice Univ, Dept Bioengn, Houston, TX 77251 USA
[2] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA
[3] Radboud Univ Nijmegen, Med Ctr, Dept Periodontol & Biomat, Nijmegen, Netherlands
[4] Natl Univ Singapore, Div Bioengn, Singapore, Singapore
[5] Brown Univ, Div Engn & Orthopaed, Providence, RI 02912 USA
[6] Univ Virginia, Dept Orthopaed Surg, Charlottesville, VA USA
[7] Univ Virginia, Dept Biomed Engn, Charlottesville, VA USA
[8] Univ Virginia, Dept Chem Engn, Charlottesville, VA USA
[9] NIAMSD, Cartilage Biol & Orthopaed Branch, NIH, Dept Hlth & Human Serv, Bethesda, MD 20892 USA
关键词
biomaterials; orthopedic; tissue engineering; nanocomposites; nanofibers;
D O I
10.1002/jor.20305
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Advancements in nanobiotechnology are revolutionizing our capability to understand biological intricacies and resolve biological and medical problems by developing subtle biomimetic techniques. Nanocomposites and nanostructured materials are believed to play a pivotal role in orthopedic research since bone itself is a typical example of a nanocomposite. This article reviews current strategies using nanobiomaterials to improve current orthopedic materials and examines their applications in bone tissue engineering. Preliminary investigations support the potential of nanobiomaterials in orthopedic applications; however, significant advancements are necessary to achieve clinical use. Overall, current trends in nanobiotechnology foreshadow a bright future through the use of nanobiomaterials in the orthopedic domain. (c) 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 63 条
[1]   In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants [J].
Barrère, F ;
van der Valk, CM ;
Dalmeijer, RAJ ;
van Blitterswijk, CA ;
de Groot, K ;
Layrolle, P .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 64A (02) :378-387
[2]   Biomimetic coatings on titanium:: a crystal growth study of octacalcium phosphate [J].
Barrère, F ;
Layrolle, P ;
van Blitterswijk, CA ;
de Groot, K .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2001, 12 (06) :529-534
[3]   The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces [J].
Benoit, DSW ;
Anseth, KS .
BIOMATERIALS, 2005, 26 (25) :5209-5220
[4]  
Bhattacharyya S, 2005, MATER RES SOC SYMP P, V845, P91
[5]  
BHATTACHARYYA S, 2003, MRS FALL M P F, V8, P10
[6]   Electrospun chitosan-based nanofibers and their cellular compatibility [J].
Bhattarai, N ;
Edmondson, D ;
Veiseh, O ;
Matsen, FA ;
Zhang, MQ .
BIOMATERIALS, 2005, 26 (31) :6176-6184
[7]   Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering [J].
Burdick, JA ;
Anseth, KS .
BIOMATERIALS, 2002, 23 (22) :4315-4323
[8]   IN-VIVO MECHANICAL AND HISTOLOGICAL CHARACTERISTICS OF HA-COATED IMPLANTS VARY WITH COATING VENDOR [J].
DALTON, JE ;
COOK, SD .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1995, 29 (02) :239-245
[9]   BUILDUP OF ULTRATHIN MULTILAYER FILMS BY A SELF-ASSEMBLY PROCESS .3. CONSECUTIVELY ALTERNATING ADSORPTION OF ANIONIC AND CATIONIC POLYELECTROLYTES ON CHARGED SURFACES [J].
DECHER, G ;
HONG, JD ;
SCHMITT, J .
THIN SOLID FILMS, 1992, 210 (1-2) :831-835
[10]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237