Bioengineering nitrogen acquisition in rice: can novel initiatives in rice genomics and physiology contribute to global food security?

被引:41
作者
Britto, DT [1 ]
Kronzucker, HJ [1 ]
机构
[1] Univ Toronto, Dept Bot, Dept Life Sci, Scarborough, ON M1C 1A4, Canada
关键词
D O I
10.1002/bies.20040
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rice is the most important crop species on earth, providing staple food for 70% of the world's human population. Over the past four decades, successes in classical breeding, fertilization, pest control, irrigation and expansion of arable land have massively increased global rice production, enabling crop scientists and farmers to stave off anticipated famines. If current projections for human population growth are correct, however, present rice yields will be insufficient within a few years. Rice yields will have to increase by an estimated 60% in the next 30 years, or global food security will be in danger. The classical methods of previous green revolutions alone will probably not be able to meet this challenge, without being coupled to recombinant DNA technology. Here, we focus on the promise of these modern technologies in the area of nitrogen acquisition in rice, recognizing that nitrogen deficiency compromises the realization of rice yield potential in the field more than any other single factor. We summarize rice-specific advances in four key areas of research: (1) nitrogen fixation, (2) primary nitrogen acquisition, (3) manipulations of internal nitrogen metabolism, and (4) interactions between nitrogen and photosynthesis. We develop a model for future plant breeding possibilities, pointing out the importance of coming to terms with the complex interactions among the physiological components under manipulation, in the context of ensuring proper targeting of intellectual and financial resources in this crucial area of research. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:683 / 692
页数:10
相关论文
共 98 条
[1]   Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development [J].
Ameziane, R ;
Bernhard, K ;
Lightfoot, D .
PLANT AND SOIL, 2000, 221 (01) :47-57
[2]   Engineering salt tolerance in plants [J].
Apse, MP ;
Blumwald, E .
CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (02) :146-150
[3]   Denitrification coupled to nitrification in the rhizosphere of rice [J].
Arth, I ;
Frenzel, P ;
Conrad, R .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (04) :509-515
[4]   The Medicago Genome Initiative:: a model legume database [J].
Bell, CJ ;
Dixon, RA ;
Farmer, AD ;
Flores, R ;
Inman, J ;
Gonzales, RA ;
Harrison, MJ ;
Paiva, NL ;
Scott, AD ;
Weller, JW ;
May, GD .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :114-117
[5]   CONTRIBUTIONS OF CONVENTIONAL PLANT-BREEDING TO FOOD-PRODUCTION [J].
BORLAUG, NE .
SCIENCE, 1983, 219 (4585) :689-693
[6]   NH4+ toxicity in higher plants:: a critical review [J].
Britto, DT ;
Kronzucker, HJ .
JOURNAL OF PLANT PHYSIOLOGY, 2002, 159 (06) :567-584
[7]   Constancy of nitrogen turnover kinetics in the plant cell: insights into the integration of subcellular N fluxes [J].
Britto, DT ;
Kronzucker, HJ .
PLANTA, 2001, 213 (02) :175-181
[8]   EFFECT OF TEMPERATURE ON THE CO2/O2 SPECIFICITY OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE AND THE RATE OF RESPIRATION IN THE LIGHT - ESTIMATES FROM GAS-EXCHANGE MEASUREMENTS ON SPINACH [J].
BROOKS, A ;
FARQUHAR, GD .
PLANTA, 1985, 165 (03) :397-406
[9]   Signals exchanged between legumes and Rhizobium:: agricultural uses and perspectives [J].
Broughton, WJ ;
Zhang, F ;
Perret, X ;
Staehelin, C .
PLANT AND SOIL, 2003, 252 (01) :129-137
[10]  
BROWN L, 2001, STATE WORLD, P42