Quadratic trigonometric polynomial curves with a shape parameter

被引:130
作者
Han, XL [1 ]
机构
[1] Cent S Univ, Dept Appl Math & Appl Software, Changsha 410083, Peoples R China
[2] Univ Florida, Gainesville, FL 32611 USA
关键词
trigonometric polynomial; trigonometric curve; splines;
D O I
10.1016/S0167-8396(02)00126-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quadratic trigonometric polynomial curves with a shape parameter are presented in this paper. Analogous to the quadratic B-spline curves, the trigonometric polynomial curves are constructed with three consecutive control points for each curve segment and are C-1 continuous with a non-uniform knot vector. With the shape parameters, the trigonometric polynomial curves can yield tight envelopes for the quadratic B-spline curves and can be closer to the given control polygon than the quadratic B-spline curves. The trigonometric polynomial curves also can be decreased to linear trigonometric polynomial curves which can represent ellipses. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:503 / 512
页数:10
相关论文
共 11 条
[1]  
Hoschek J., 1993, Fundamentals of computer aided geometric design
[2]  
Koch P. E., 1995, Advances in Computational Mathematics, V3, P405, DOI 10.1007/BF03028369
[3]   MULTIVARIATE TRIGONOMETRIC B-SPLINES [J].
KOCH, PE .
JOURNAL OF APPROXIMATION THEORY, 1988, 54 (02) :162-168
[4]   Quasi-interpolants based on trigonometric splines [J].
Lyche, T ;
Schumaker, LL ;
Stanley, S .
JOURNAL OF APPROXIMATION THEORY, 1998, 95 (02) :280-309
[5]   STABLE RECURRENCE RELATION FOR TRIGONOMETRIC B-SPLINES [J].
LYCHE, T ;
WINTHER, R .
JOURNAL OF APPROXIMATION THEORY, 1979, 25 (03) :266-279
[6]  
Lyche T., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P229, DOI 10.1007/BF01930853
[7]   Shape preserving representations for trigonometric polynomial curves [J].
Pena, JM .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (01) :5-11
[8]   Harmonic rational Bezier curves, p-Bezier curves and trigonometric polynomials [J].
Sanchez-Reyes, J .
COMPUTER AIDED GEOMETRIC DESIGN, 1998, 15 (09) :909-923
[9]  
SCHOENBERG IJ, 1964, J MATH MECH, V13, P795
[10]   Identities for trigonometric B-splines with an application to curve design [J].
Walz, G .
BIT, 1997, 37 (01) :189-201