Detection of divergent genes in microbial aCGH experiments

被引:8
作者
Snipen, Lars [1 ]
Repsilber, Dirk
Nyquist, Ludvig
Ziegler, Andreas
Aakra, Agot
Aastveit, Are
机构
[1] Norwegian Univ Life Sci, Dept Chem Biotechnol & Food Sci, N-1432 As, Norway
[2] Univ Potsdam, Dept Biol & Biochem Bioinformat, Potsdam, Germany
[3] Univ Lubeck, Inst Med Biometry & Stat, Lubeck, Germany
关键词
D O I
10.1186/1471-2105-7-181
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Array-based comparative genome hybridization ( aCGH) is a tool for rapid comparison of genomes from different bacterial strains. The purpose of such analysis is to detect highly divergent or absent genes in a sample strain compared to an index strain. Development of methods for analyzing aCGH data has primarily focused on copy number abberations in cancer research. In microbial aCGH analyses, genes are typically ranked by log-ratios, and classification into divergent or present is done by choosing a cutoff log-ratio, either manually or by statistics calculated from the log-ratio distribution. As experimental settings vary considerably, it is not possible to develop a classical discriminant or statistical learning approach. Methods: We introduce a more efficient method for analyzing microbial aCGH data using a finite mixture model and a data rotation scheme. Using the average posterior probabilities from the model fitted to log-ratios before and after rotation, we get a score for each gene, and demonstrate its advantages for ranking and detecting divergent genes with enlarged specificity and sensitivity. Results: The procedure is tested and compared to other approaches on simulated data sets, as well as on four experimental validation data sets for aCGH analysis on fully sequenced strains of Staphylococcus aureus and Streptococcus pneumoniae. Conclusion: When tested on simulated data as well as on four different experimental validation data sets from experiments with only fully sequenced strains, our procedure out-competes the standard procedures of using a simple log-ratio cutoff for classification into present and divergent genes.
引用
收藏
页数:11
相关论文
共 20 条
[1]   CGH-Plotter: MATLAB toolbox for CGH-data analysis [J].
Autio, R ;
Hautaniemi, S ;
Kauraniemi, P ;
Yli-Harja, O ;
Astola, J ;
Wolf, M ;
Kallioniemi, A .
BIOINFORMATICS, 2003, 19 (13) :1714-1715
[2]   Comparative genomics of BCG vaccines by whole-genome DNA microarray [J].
Behr, MA ;
Wilson, MA ;
Gill, WP ;
Salamon, H ;
Schoolnik, GK ;
Rane, S ;
Small, PM .
SCIENCE, 1999, 284 (5419) :1520-1523
[3]   Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori [J].
Björkholm, B ;
Lundin, A ;
Sillén, A ;
Guillemin, K ;
Salama, N ;
Rubio, C ;
Gordon, JI ;
Falk, P ;
Engstrand, L .
INFECTION AND IMMUNITY, 2001, 69 (12) :7832-7838
[4]  
CUI X, 2003, STAT APPL GENET MOL, V2
[5]  
Dorrell N, 2002, METHOD MICROBIOL, V33, P121
[6]   Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity [J].
Dorrell, N ;
Mangan, JA ;
Laing, KG ;
Hinds, J ;
Linton, D ;
Al-Ghusein, H ;
Barrell, BG ;
Parkhill, J ;
Stoker, NG ;
Karlyshev, AV ;
Butcher, PD ;
Wren, BW .
GENOME RESEARCH, 2001, 11 (10) :1706-1715
[7]   Uses of Staphylococcus aureus GeneChips in genotyping and genetic composition analysis [J].
Dunman, PM ;
Mounts, W ;
McAleese, F ;
Immermann, F ;
Macapagal, D ;
Marsilio, E ;
McDougal, L ;
Tenover, FC ;
Bradford, PA ;
Petersen, PJ ;
Projan, SJ ;
Murphy, E .
JOURNAL OF CLINICAL MICROBIOLOGY, 2004, 42 (09) :4275-4283
[8]   Evolutionary genomics of Staphylococcus aureus:: Insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic [J].
Fitzgerald, JR ;
Sturdevant, DE ;
Mackie, SM ;
Gill, SR ;
Musser, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (15) :8821-8826
[9]   Hidden Markov models approach to the analysis of array CGH data [J].
Fridlyand, J ;
Snijders, AM ;
Pinkel, D ;
Albertson, DG ;
Jain, AN .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) :132-153
[10]   Determination of the core of a minimal bacterial gene set [J].
Gil, R ;
Silva, FJ ;
Peretó, J ;
Moya, A .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2004, 68 (03) :518-+