High dimensional polynomial interpolation on sparse grids

被引:456
作者
Barthelmann, V
Novak, E
Ritter, K
机构
[1] 3SOFT, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Math Inst, D-91054 Erlangen, Germany
[3] Univ Passau, Fak Math & Informat, D-94030 Passau, Germany
关键词
multivariate polynomial interpolation; sparse grids; least solution; universal method; tractability;
D O I
10.1023/A:1018977404843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study polynomial interpolation on a d-dimensional cube, where d is large. We suggest to use the least solution at sparse grids with the extrema of the Chebyshev polynomials. The polynomial exactness of this method is almost optimal. Our error bounds show that the method is universal, i.e., almost optimal for many different function spaces. We report on numerical experiments for d=10 using up to 652065 interpolation points.
引用
收藏
页码:273 / 288
页数:16
相关论文
共 28 条
[21]  
SMOLYAK SA, 1963, SOV MATH DOKL, V4, P240
[22]  
SPRENGEL F, 1997, ROSTOCK MATH K, V51, P51
[23]  
SPRENGEL F, 1997, MATH RES, V101, P269
[24]  
TEMLYAKOV VN, 1993, APPROXIMATION PERIOD
[25]   Weighted tensor product algorithms for linear multivariate problems [J].
Wasilkowski, GW ;
Wozniakowski, H .
JOURNAL OF COMPLEXITY, 1999, 15 (03) :402-447
[26]   EXPLICIT COST BOUNDS OF ALGORITHMS FOR MULTIVARIATE TENSOR PRODUCT PROBLEMS [J].
WASILKOWSKI, GW ;
WOZNIAKOWSKI, H .
JOURNAL OF COMPLEXITY, 1995, 11 (01) :1-56
[27]  
Wozniakowski H., 1994, Journal of Complexity, V10, P96, DOI 10.1006/jcom.1994.1004
[28]  
WOZNIAKOWSKI H, 1994, J COMPUTING INFORMAT, V4, P1