Individual differences in error processing: A review and reanalysis of three event-related fMRI studies using the GO/NOGO task

被引:256
作者
Hester, R
Fassbender, C
Garavan, H [1 ]
机构
[1] Trinity Coll Dublin, Dept Psychol, Dublin 2, Ireland
[2] Trinity Coll Dublin, Trinity Coll Inst Neurosci, Dublin 2, Ireland
[3] Med Coll Wisconsin, Dept Psychiat & Behav Med, Milwaukee, WI 53226 USA
关键词
absentmindedness; age; cingulate; error processing; sex differences; signal averaging;
D O I
10.1093/cercor/bhh059
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Three previous studies using the GO/NOGO task were examined to characterize the pattern of functional activation seen during error-related processing. The large sample size (n = 44) also allowed investigation of the influence of individual differences in age, sex, self-reported absentmindedness and reaction speed on the level of activation. Errors were seen to activate a network of regions including the anterior cingulate cortex (ACC), pre-supplementary motor area (pre-SMA), bilateral insula, thalamus and right inferior parietal lobule. Split-half comparisons performed for each of the individual difference variables indicated greater ACC and pre-SMA activation for older subjects while slower responders showed greater activation in the parietal, lateral PFC, insula and ACC regions. Whereas males and females demonstrated equivalent levels of activation in both the ACC and insula, self-reported absentmindedness related to reduced activation in these regions. Our review of the current imaging literature on error-related activation indicates that, despite the use of a variety of other cognitive paradigms, the network of regions identified here is consistent with these previous studies, suggesting that these regions are critical to a 'general' error-related response. Furthermore, this response is, in part, influenced by individual differences in both demographic characteristics and behavioural performance.
引用
收藏
页码:986 / 994
页数:9
相关论文
共 65 条
[1]   Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia [J].
Alain, C ;
McNeely, HE ;
He, Y ;
Christensen, BK ;
West, R .
CEREBRAL CORTEX, 2002, 12 (08) :840-846
[2]   Conflict monitoring and cognitive control [J].
Botvinick, MM ;
Braver, TS ;
Barch, DM ;
Carter, CS ;
Cohen, JD .
PSYCHOLOGICAL REVIEW, 2001, 108 (03) :624-652
[3]   Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors [J].
Braver, TS ;
Barch, DM ;
Gray, JR ;
Molfese, DL ;
Snyder, A .
CEREBRAL CORTEX, 2001, 11 (09) :825-836
[4]   THE COGNITIVE FAILURES QUESTIONNAIRE (CFQ) AND ITS CORRELATES [J].
BROADBENT, DE ;
COOPER, PF ;
FITZGERALD, P ;
PARKES, KR .
BRITISH JOURNAL OF CLINICAL PSYCHOLOGY, 1982, 21 (FEB) :1-16
[5]   Cognitive and emotional influences in anterior cingulate cortex [J].
Bush, G ;
Luu, P ;
Posner, MI .
TRENDS IN COGNITIVE SCIENCES, 2000, 4 (06) :215-222
[6]   Anterior cingulate cortex, error detection, and the online monitoring of performance [J].
Carter, CS ;
Braver, TS ;
Barch, DM ;
Botvinick, MM ;
Noll, D ;
Cohen, JD .
SCIENCE, 1998, 280 (5364) :747-749
[7]   Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: An event-related fMRI study [J].
Carter, CS ;
MacDonald, AW ;
Ross, LL ;
Stenger, VA .
AMERICAN JOURNAL OF PSYCHIATRY, 2001, 158 (09) :1423-1428
[8]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[9]   LOCALIZATION OF A NEURAL SYSTEM FOR ERROR-DETECTION AND COMPENSATION [J].
DEHAENE, S ;
POSNER, MI ;
TUCKER, DM .
PSYCHOLOGICAL SCIENCE, 1994, 5 (05) :303-305
[10]   Error monitoring during reward and avoidance learning in high- and low-socialized individuals [J].
Dikman, ZV ;
Allen, JJB .
PSYCHOPHYSIOLOGY, 2000, 37 (01) :43-54