Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures

被引:192
作者
Zhang, Hao
Wang, Dayang [1 ]
Yang, Bai
Moehwald, Helmuth
机构
[1] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany
[2] Jilin Univ, Key Lab Supramol Struct & Mat, Coll Chem, Changchun 130012, Peoples R China
关键词
D O I
10.1021/ja061787h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present article is devoted to systematically exploring the influence of various experimental variables, including the precursor concentration, the ligand nature, the counterion type, the Cd-to-Te molar ratio, pH, and temperature, on the aqueous growth of CdTe nanocrystals. The growth may be divided into two stages: the early fast growth stage and the later slow growth stage. The later stage is found to be dominated by Ostwald ripening (OR), being strongly dependent on all experimental conditions. In contrast, the early stage is dominated by adding monomers to nanocrystals, which may be dramatically accelerated by lowering precursor concentrations and using ligands with a molecular structure similar to that of thioglycolic acid (TGA). This fast growth stage is similar to that observed during organometallic growth of nanocrystals in hot organic media. On the basis of this finding, one-dimensional wurtzite CdTe nanostructures can be directly prepared in aqueous media by storing rather dilute precursor solution (2.4 mM with reference to ligand) in the presence of TGA at lower temperature (from room temperature to 80 degrees C). A low growth temperature is used to suppress OR during crystal growth. In addition, the simultaneous presence of both TGA-like ligand and 1-thioglycerol or 2-mercaptoethylamine leads to formation of colloidally stable 1D CdTe nanostructures with controlled aspect ratios.
引用
收藏
页码:10171 / 10180
页数:10
相关论文
共 83 条
[1]   Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols [J].
Aldana, J ;
Wang, YA ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (36) :8844-8850
[2]   CRYSTAL TRANSFORMATION FOR HARD SPHERES [J].
ALDER, BJ ;
CARTER, BP ;
YOUNG, DA .
PHYSICAL REVIEW, 1969, 183 (03) :831-&
[3]   Self-organized, highly luminescent CdSe nanorod-DNA complexes [J].
Artemyev, M ;
Kisiel, D ;
Abmiotko, S ;
Antipina, MN ;
Khomutov, GB ;
Kislov, VV ;
Rakhnyanskaya, AA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (34) :10594-10597
[4]   Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure [J].
Bao, HB ;
Gong, YJ ;
Li, Z ;
Gao, MY .
CHEMISTRY OF MATERIALS, 2004, 16 (20) :3853-3859
[5]   Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J].
Cao, YW ;
Banin, U .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (40) :9692-9702
[6]   Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals [J].
Donegá, CD ;
Hickey, SG ;
Wuister, SF ;
Vanmaekelbergh, D ;
Meijerink, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (02) :489-496
[7]   Chemical self-assembly for electronic applications [J].
Fendler, JH .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3196-3210
[8]   Strongly photoluminescent CdTe nanocrystals by proper surface modification [J].
Gao, MY ;
Kirstein, S ;
Möhwald, H ;
Rogach, AL ;
Kornowski, A ;
Eychmüller, A ;
Weller, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (43) :8360-8363
[9]   Thiol-capping of CdTe nanocrystals:: An alternative to organometallic synthetic routes [J].
Gaponik, N ;
Talapin, DV ;
Rogach, AL ;
Hoppe, K ;
Shevchenko, EV ;
Kornowski, A ;
Eychmüller, A ;
Weller, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (29) :7177-7185
[10]   Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silica-shell spacer [J].
Grzelczak, M ;
Correa-Duarte, MA ;
Salgueiriño-Maceira, V ;
Giersig, M ;
Diaz, R ;
Liz-Marzán, LM .
ADVANCED MATERIALS, 2006, 18 (04) :415-+