Testing predictor contributions in sufficient dimension reduction

被引:124
作者
Cook, RD [1 ]
机构
[1] Univ Minnesota, Sch Stat, St Paul, MN 55108 USA
关键词
central subspace; nonparametric regression; sliced inverse regression;
D O I
10.1214/009053604000000292
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop tests of the hypothesis of no effect for selected predictors in regression, without assuming a model for the conditional distribution of the response given the predictors. Predictor effects need not be limited to the mean function and smoothing is not required. The general approach is based on sufficient dimension reduction, the idea being to replace the predictor vector with a lower-dimensional version without loss of information on the regression. Methodology using sliced inverse regression is developed in detail.
引用
收藏
页码:1062 / 1092
页数:31
相关论文
共 31 条