Characterization of the icmH and icmF genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells

被引:45
作者
Zusman, T [1 ]
Feldman, M [1 ]
Halperin, E [1 ]
Segal, G [1 ]
机构
[1] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Mol Microbiol & Biotechnol, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1128/IAI.72.6.3398-3409.2004
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates intracellularly within a specialized phagosome of mammalian and protozoan host cells, and the Icm/Dot type IV secretion system has been shown to be essential for this process. Unlike all the other known Icm/Dot proteins, the IcmF protein, which was described before, and the IcmH protein, which is characterized here, have homologous proteins in many bacteria (such as Yersinia pestis, Salmonella enterica, Rhizobium leguminosarum, and Vibrio cholerae), all of which associate with eukaryotic cells. Here, we have characterized the L. pneumophila icmH and icmF genes and found that both genes are present in 16 different Legionella species examined. The icmH and icmF genes were found to be absolutely required for intracellular multiplication in Acanthamoeba castellanii and partially required for intracellular growth in HL-60-derived human macrophages, for immediate cytotoxicity, and for salt sensitivity. Mutagenesis of the predicted ATP/GTP binding site of IcmF revealed that the site is partially required for intracellular growth in A. castellanii. Analysis of the regulatory region of the icmH and icmF genes, which were found to be cotranscribed, revealed that it contains at least two regulatory elements. In addition, an icmH::lacZ fusion was shown to be activated during stationary phase in a LetA- and RelA-dependent manner. Our results indicate that although the icmH and icmF genes probably have a different evolutionary origin than the rest of the icm/dot genes, they are part of the icm/dot system and are required for L. pneumophila pathogenesis.
引用
收藏
页码:3398 / 3409
页数:12
相关论文
共 73 条
[1]   Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway [J].
Andrews, HL ;
Vogel, JP ;
Isberg, RR .
INFECTION AND IMMUNITY, 1998, 66 (03) :950-958
[2]   RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase [J].
Bachman, MA ;
Swanson, MS .
MOLECULAR MICROBIOLOGY, 2001, 40 (05) :1201-1214
[3]   ALTERED INTRACELLULAR TARGETING PROPERTIES ASSOCIATED WITH MUTATIONS IN THE LEGIONELLA-PNEUMOPHILA DOTA GENE [J].
BERGER, KH ;
MERRIAM, JJ ;
ISBERG, RR .
MOLECULAR MICROBIOLOGY, 1994, 14 (04) :809-822
[4]   Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion [J].
Bladergroen, MR ;
Badelt, K ;
Spaink, HP .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2003, 16 (01) :53-64
[5]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[6]   THE LEGIONELLA-PNEUMOPHILA-ICM LOCUS - A SET OF GENES REQUIRED FOR INTRACELLULAR MULTIPLICATION IN HUMAN MACROPHAGES [J].
BRAND, BC ;
SADOSKY, AB ;
SHUMAN, HA .
MOLECULAR MICROBIOLOGY, 1994, 14 (04) :797-808
[7]   Expression of Legionella pneumophila virulence traits in response to growth conditions [J].
Byrne, B ;
Swanson, MS .
INFECTION AND IMMUNITY, 1998, 66 (07) :3029-3034
[8]   ANALYSIS OF GENE-CONTROL SIGNALS BY DNA-FUSION AND CLONING IN ESCHERICHIA-COLI [J].
CASADABAN, MJ ;
COHEN, SN .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 138 (02) :179-207
[9]   Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells [J].
Christie, PJ ;
Vogel, JP .
TRENDS IN MICROBIOLOGY, 2000, 8 (08) :354-360
[10]   Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth [J].
Coers, J ;
Monahan, C ;
Roy, CR .
NATURE CELL BIOLOGY, 1999, 1 (07) :451-453