Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations

被引:198
作者
O'Neill, Laura P. [1 ]
VerMilyea, Matthew D. [1 ]
Turner, Bryan M. [1 ]
机构
[1] Univ Birmingham, Sch Med, Biomed Res Inst, Chromatin & Gene Express Grp, Birmingham B15 2TT, W Midlands, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1038/ng1820
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Chromatin immunoprecipitation (ChIP) defines the genomic distribution of proteins and their modifications but is limited by the cell numbers required (ideally 4107). Here we describe a protocol that uses carrier chromatin and PCR, 'carrier' ChIP (CChIP), to permit analysis of as few as 100 cells. We assayed histone modifications at key regulator genes (such as Nanog, Pou5f1 (also known as Oct4) and Cdx2) by CChIP in mouse embryonic stem (ES) cells and in inner cell mass (ICM) and trophectoderm of cultured blastocysts. Activating and silencing modifications (H4 acetylation and H3K9 methylation) mark active and silent promoters as predicted, and we find close correlation between values derived from CChIP (1,000 ES cells) and conventional ChIP (5 x 10(7) ES cells). Studies on genes silenced in both ICM and ES cells (Cdx2, Cfc1, Hhex and Nkx2-2, also known as Nkx) show that the intensity of silencing marks is relatively diminished in ES cells, indicating a possible relaxation of some components of silencing on adaptation to culture.
引用
收藏
页码:835 / 841
页数:7
相关论文
共 50 条
[1]   Primary differentiation in the human blastocyst: Comparative molecular portraits of inner cell mass and trophectoderm cells [J].
Adjaye, J ;
Huntriss, J ;
Herwig, R ;
BenKahla, A ;
Brink, TC ;
Wierling, C ;
Hultschig, C ;
Groth, D ;
Yaspo, ML ;
Picton, HM ;
Gosden, RG ;
Lehrach, H .
STEM CELLS, 2005, 23 (10) :1514-1525
[2]   Epigenetic aspects of differentiation [J].
Arney, KL ;
Fisher, AG .
JOURNAL OF CELL SCIENCE, 2004, 117 (19) :4355-4363
[3]   Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes [J].
Baxter, J ;
Sauer, S ;
Peters, A ;
John, R ;
Williams, R ;
Caparros, ML ;
Arney, K ;
Otte, A ;
Jenuwein, T ;
Merkenschlager, M ;
Fisher, AG .
EMBO JOURNAL, 2004, 23 (22) :4462-4472
[4]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[5]   Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells [J].
Chambers, I ;
Colby, D ;
Robertson, M ;
Nichols, J ;
Lee, S ;
Tweedie, S ;
Smith, A .
CELL, 2003, 113 (05) :643-655
[6]   Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation [J].
Fischle, W ;
Tseng, BS ;
Dormann, HL ;
Ueberheide, BM ;
Garcia, BA ;
Shabanowitz, J ;
Hunt, DF ;
Funabiki, H ;
Allis, CD .
NATURE, 2005, 438 (7071) :1116-1122
[7]   Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo -: art. no. e151 [J].
Geisberg, JV ;
Struhl, K .
NUCLEIC ACIDS RESEARCH, 2004, 32 (19) :e151
[8]  
Gilbert N, 2005, INT REV CYTOL, V242, P283
[9]  
Gregory R I, 1999, Nucleic Acids Res, V27, pe32, DOI 10.1093/nar/27.22.e32
[10]   Inhibition of histone deacetylases alters allelic chromatin conformation at the imprinted U2af1-rs1 locus in mouse embryonic stem cells [J].
Gregory, RI ;
O'Neill, LP ;
Randall, TE ;
Fournier, C ;
Khosla, S ;
Turner, BM ;
Feil, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (14) :11728-11734