T-spline simplification and local refinement

被引:426
作者
Sederberg, TW [1 ]
Cardon, DL
Finnigan, GT
North, NS
Zheng, JM
Lyche, T
机构
[1] Brigham Young Univ, Provo, UT 84602 USA
[2] Nanyang Technol Univ, Singapore, Singapore
[3] Univ Oslo, N-0316 Oslo, Norway
来源
ACM TRANSACTIONS ON GRAPHICS | 2004年 / 23卷 / 03期
关键词
NURBS surfaces; T-splines; subdivision surfaces; local refinement; knot removal;
D O I
10.1145/1015706.1015715
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A typical NURBS surface model has a large percentage of superfluous control points that significantly interfere with the design process. This paper presents an algorithm for eliminating such superfluous control points, producing a T-spline. The algorithm can remove substantially more control points than competing methods such as B-spline wavelet decomposition. The paper also presents a new T-spline local refinement algorithm and answers two fundamental open questions on T-spline theory.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 22 条
[11]  
HANDSCOMB D, 1987, INT SERIES NUMERICAL, V81, P103
[12]  
Kraft R, 1997, SURFACE FITTING MULT, V2, P209
[13]   THEORETICAL DEVELOPMENT FOR THE COMPUTER-GENERATION AND DISPLAY OF PIECEWISE POLYNOMIAL SURFACES [J].
LANE, JM ;
RIESENFELD, RF .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1980, 2 (01) :35-46
[14]  
Lyche T., 1987, Computer-Aided Geometric Design, V4, P217, DOI 10.1016/0167-8396(87)90013-6
[15]   A multiresolution tensor spline method for fitting functions on the sphere [J].
Lyche, T ;
Schumaker, LL .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :724-746
[16]  
Lyche T., 2001, MULTIVARIATE APPROXI, P152
[17]  
Lynch J. M., 1985, Advances in Soil Science, USA, V2, P133
[18]  
LYNCHE T, 1993, APPROXIMATION THEORY, V7, P207
[19]  
Schroder P, 2019, Proc. 22nd Ann. Conf. Comput. Graphics Interactive Techniques (SIGGRAPH'95)
[20]   T-splines and T-NURCCs [J].
Sederberg, TN ;
Zheng, JM ;
Bakenov, A ;
Nasri, A .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :477-484