Time resolved fluorescence tomography of turbid media based on lifetime contrast

被引:86
作者
Kumar, Anand T. N. [1 ]
Raymond, Scott B.
Boverman, Gregory
Boas, David A.
Bacskai, Brian J.
机构
[1] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Dept Neurol, Charlestown, MA 02129 USA
[2] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Dept Radiol, Charlestown, MA 02129 USA
[3] Harvard Mit Div Hlth Sci & Technol, Boston, MA 02115 USA
[4] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
[5] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[6] Massachusetts Gen Hosp, Dept Neurol, Alzheimers Dis Res Unit, Charlestown, MA 02129 USA
来源
OPTICS EXPRESS | 2006年 / 14卷 / 25期
关键词
D O I
10.1364/OE.14.012255
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A general linear model for time domain (TD) fluorescence tomography is presented that allows a lifetime-based analysis of the entire temporal fluorescence response from a turbid medium. Simulations are used to show that TD fluorescence tomography is optimally performed using two complementary approaches: A direct TD analysis of a few time points near the peak of the temporal response, which provides superior resolution; and an asymptotic multi-exponential analysis based tomography of the decay portion of the temporal response, which provides accurate localization of yield distributions for various lifetime components present in the imaging medium. These results indicate the potential of TD technology for biomedical imaging with lifetime sensitive targeted probes, and provide useful guidelines for an optimal approach to fluorescence tomography with TD data. (c) 2006 Optical Society of America
引用
收藏
页码:12255 / 12270
页数:16
相关论文
共 30 条
[1]   Feasibility of diffuse optical imaging with long-lived luminescent probes [J].
Apreleva, SV ;
Wilson, DE ;
Vinogradov, SA .
OPTICS LETTERS, 2006, 31 (08) :1082-1084
[2]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[3]   Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques [J].
Bacskai, BJ ;
Skoch, J ;
Hickey, GA ;
Allen, R ;
Hyman, BT .
JOURNAL OF BIOMEDICAL OPTICS, 2003, 8 (03) :368-375
[4]   Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell [J].
Bastiaens, PIH ;
Squire, A .
TRENDS IN CELL BIOLOGY, 1999, 9 (02) :48-52
[5]   Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice [J].
Bloch, S ;
Lesage, F ;
McIntosh, L ;
Gandjbakhche, A ;
Liang, KX ;
Achilefu, S .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (05)
[6]  
Chandrasekhar S., 1960, RAD TRANSFER
[7]   Optical computed tomography in a turbid medium using early arriving photons [J].
Chen, K ;
Perelman, LT ;
Zhang, QG ;
Dasari, RR ;
Feld, MS .
JOURNAL OF BIOMEDICAL OPTICS, 2000, 5 (02) :144-154
[8]   Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis [J].
Culver, JP ;
Ntziachristos, V ;
Holboke, MJ ;
Yodh, AG .
OPTICS LETTERS, 2001, 26 (10) :701-703
[9]   Time-resolved fluorescence and photon migration studies in biomedical and model random media [J].
Das, BB ;
Liu, F ;
Alfano, RR .
REPORTS ON PROGRESS IN PHYSICS, 1997, 60 (02) :227-292
[10]   A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography [J].
Gao, Feng ;
Zhao, Huijuan ;
Tanikawa, Yukari ;
Yamada, Yukio .
OPTICS EXPRESS, 2006, 14 (16) :7109-7124