Discovery and Expansion of Gene Modules by Seeking Isolated Groups in a Random Graph Process

被引:1
作者
Brumm, Jochen [1 ,2 ]
Conibear, Elizabeth [2 ,3 ]
Wasserman, Wyeth W. [2 ,3 ]
Bryan, Jennifer [1 ,4 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1W5, Canada
[2] Univ British Columbia, Child & Family Res Inst, Ctr Mol Med & Therapeut, Vancouver, BC V5Z 1M9, Canada
[3] Univ British Columbia, Dept Med Genet, Vancouver, BC V5Z 1M9, Canada
[4] Univ British Columbia, Michael Smith Lab, Vancouver, BC V5Z 1M9, Canada
来源
PLOS ONE | 2008年 / 3卷 / 10期
基金
加拿大创新基金会; 加拿大健康研究院;
关键词
D O I
10.1371/journal.pone.0003358
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: A central problem in systems biology research is the identification and extension of biological modules groups of genes or proteins participating in a common cellular process or physical complex. As a result, there is a persistent need for practical, principled methods to infer the modular organization of genes from genome-scale data. Results: We introduce a novel approach for the identification of modules based on the persistence of isolated gene groups within an evolving graph process. First, the underlying genomic data is summarized in the form of ranked gene-gene relationships, thereby accommodating studies that quantify the relevant biological relationship directly or indirectly. Then, the observed gene-gene relationship ranks are viewed as the outcome of a random graph process and candidate modules are given by the identifiable subgraphs that arise during this process. An isolation index is computed for each module, which quantifies the statistical significance of its survival time. Conclusions: The Miso (module isolation) method predicts gene modules from genomic data and the associated isolation index provides a module-specific measure of confidence. Improving on existing alternative, such as graph clustering and the global pruning of dendrograms, this index offers two intuitively appealing features: (1) the score is module-specific; and (2) different choices of threshold correlate logically with the resulting performance, i.e. a stringent cutoff yields high quality predictions, but low sensitivity. Through the analysis of yeast phenotype data, the Miso method is shown to outperform existing alternatives, in terms of the specificity and sensitivity of its predictions.
引用
收藏
页数:9
相关论文
共 23 条
[1]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[2]   Integrating physical and genetic maps: from genomes to interaction networks [J].
Beyer, Andreas ;
Bandyopadhyay, Sourav ;
Ideker, Trey .
NATURE REVIEWS GENETICS, 2007, 8 (09) :699-710
[3]   Evaluation of clustering algorithms for protein-protein interaction networks [J].
Brohee, Sylvain ;
van Helden, Jacques .
BMC BIOINFORMATICS, 2006, 7 (1)
[4]   Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae [J].
Collins, Sean R. ;
Kemmeren, Patrick ;
Zhao, Xue-Chu ;
Greenblatt, Jack F. ;
Spencer, Forrest ;
Holstege, Frank C. P. ;
Weissman, Jonathan S. ;
Krogan, Nevan J. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (03) :439-450
[5]  
Duda R. O., 1973, Pattern Classification
[6]   Functional profiling of the Saccharomyces cerevisiae genome [J].
Giaever, G ;
Chu, AM ;
Ni, L ;
Connelly, C ;
Riles, L ;
Véronneau, S ;
Dow, S ;
Lucau-Danila, A ;
Anderson, K ;
André, B ;
Arkin, AP ;
Astromoff, A ;
El Bakkoury, M ;
Bangham, R ;
Benito, R ;
Brachat, S ;
Campanaro, S ;
Curtiss, M ;
Davis, K ;
Deutschbauer, A ;
Entian, KD ;
Flaherty, P ;
Foury, F ;
Garfinkel, DJ ;
Gerstein, M ;
Gotte, D ;
Güldener, U ;
Hegemann, JH ;
Hempel, S ;
Herman, Z ;
Jaramillo, DF ;
Kelly, DE ;
Kelly, SL ;
Kötter, P ;
LaBonte, D ;
Lamb, DC ;
Lan, N ;
Liang, H ;
Liao, H ;
Liu, L ;
Luo, CY ;
Lussier, M ;
Mao, R ;
Menard, P ;
Ooi, SL ;
Revuelta, JL ;
Roberts, CJ ;
Rose, M ;
Ross-Macdonald, P ;
Scherens, B .
NATURE, 2002, 418 (6896) :387-391
[7]   An algorithm for clustering cDNA fingerprints [J].
Hartuv, E ;
Schmitt, AO ;
Lange, J ;
Meier-Ewert, S ;
Lehrach, H ;
Shamir, R .
GENOMICS, 2000, 66 (03) :249-256
[8]   Graphs in molecular biology [J].
Huber, Wolfgang ;
Carey, Vincent J. ;
Long, Li ;
Falcon, Seth ;
Gentleman, Robert .
BMC BIOINFORMATICS, 2007, 8 (Suppl 6)
[9]   WI-PHI: A weighted yeast interactorne enriched for direct physical interactions [J].
Kiemer, Lars ;
Costa, Stefano ;
Ueffing, Marius ;
Cesareni, Gianni .
PROTEOMICS, 2007, 7 (06) :932-943
[10]   Transcriptional regulatory networks in Saccharomyces cerevisiae [J].
Lee, TI ;
Rinaldi, NJ ;
Robert, F ;
Odom, DT ;
Bar-Joseph, Z ;
Gerber, GK ;
Hannett, NM ;
Harbison, CT ;
Thompson, CM ;
Simon, I ;
Zeitlinger, J ;
Jennings, EG ;
Murray, HL ;
Gordon, DB ;
Ren, B ;
Wyrick, JJ ;
Tagne, JB ;
Volkert, TL ;
Fraenkel, E ;
Gifford, DK ;
Young, RA .
SCIENCE, 2002, 298 (5594) :799-804