Dependence of the L-H transition on X-point geometry and divertor recycling on NSTX

被引:23
作者
Battaglia, D. J. [1 ]
Chang, C. S. [1 ]
Kaye, S. M. [1 ]
Kim, K. [2 ]
Ku, S. [1 ]
Maingi, R. [3 ]
Bell, R. E. [1 ]
Diallo, A. [1 ]
Gerhardt, S. [1 ]
LeBlanc, B. P. [1 ]
Menard, J. [1 ]
Podesta, M. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea
[3] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
TOKAMAK; PLASMA;
D O I
10.1088/0029-5515/53/11/113032
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The edge electron (T-e) and ion temperature (T-i) at the time of the L-H transition increase when the X-point radius (R-X) is reduced to a high-triangularity shape while maintaining constant edge density. Consequently the L-H power threshold (P-LH) is larger for the high-triangularity shape. This supports the prediction that a single-particle loss hole, whose properties are strongly linked to R-X and T-i, influences the edge radial electric field (E-r) and E-r x B flow-shearing rate available for turbulence suppression. Simulations using XGC0, a full-f drift-kinetic neoclassical code, indicate that maintaining a constant E-r x B flow-shearing rate does require a larger heat flux and edge T-i as R-X decreases. NSTX also observes a decrease in P-LH when the divertor recycling is decreased using lithium coatings. However, the edge T-e and T-i at the L-H transition appear independent of the divertor recycling for a constant shape. XGC0 calculations demonstrate that more heat flux is needed to maintain the edge Ti and the E-r x B flow-shearing rate as the contribution of divertor recycling to the overall neutral fuelling rate increases.
引用
收藏
页数:8
相关论文
共 32 条
[1]   JET divertor geometry and plasma shape effects on the L-H transition threshold [J].
Andrew, Y ;
Hawkes, NC ;
O'Mullane, MG ;
Sartori, R ;
de Baar, M ;
Coffey, I ;
Guenther, K ;
Jenkins, I ;
Korotkov, A ;
Lomas, P ;
Matthews, GF ;
Matilal, A ;
Prentice, R ;
Stamp, M ;
Strachan, J ;
de Vries, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 :A87-A93
[2]   Pfirsch-Schluter current-driven edge electric fields and their effect on the L-H transition power threshold [J].
Aydemir, A. Y. .
NUCLEAR FUSION, 2012, 52 (06)
[4]   Numerical study of neoclassical plasma pedestal in a tokamak geometry [J].
Chang, CS ;
Ku, S ;
Weitzner, H .
PHYSICS OF PLASMAS, 2004, 11 (05) :2649-2667
[5]   X-transport: A baseline nonambipolar transport in a diverted tokamak plasma edge [J].
Chang, CS ;
Kue, S ;
Weitzner, H .
PHYSICS OF PLASMAS, 2002, 9 (09) :3884-3892
[6]   LOSS ION ORBITS AT THE TOKAMAK EDGE [J].
CHANKIN, AV ;
MCCRACKEN, GM .
NUCLEAR FUSION, 1993, 33 (10) :1459-1469
[7]   A review of theories of the L-H transition [J].
Connor, JW ;
Wilson, HR .
PLASMA PHYSICS AND CONTROLLED FUSION, 2000, 42 (01) :R1-R74
[8]   Mean and Oscillating Plasma Flows and Turbulence Interactions across the L-H Confinement Transition [J].
Conway, G. D. ;
Angioni, C. ;
Ryter, F. ;
Sauter, P. ;
Vicente, J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (06)
[9]   Plasma flow due to a loss-cone distribution centred around the outboard edge in DIII-D [J].
deGrassie, J. S. ;
Mueller, S. H. ;
Boedo, J. A. .
NUCLEAR FUSION, 2012, 52 (01)
[10]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161