Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization

被引:98
作者
Wang, Yanan [1 ]
Ke, Xiubin [1 ]
Wu, Liqin [1 ]
Lu, Yahai [1 ]
机构
[1] China Agr Univ, Coll Resources & Environm Sci, Beijing 100094, Peoples R China
关键词
Bacteria; Archaea; Ammonia monooxygenase; Rice field soil; Nitrogen fertilizer; Spatial variation; 16S RIBOSOMAL-RNA; PADDY SOIL; IN-SITU; SEQUENCE ALIGNMENT; MICROBIAL ECOLOGY; OXYGEN GRADIENT; NITROSPIRA SPP; NITRIFICATION; RHIZOSPHERE; DENITRIFICATION;
D O I
10.1016/j.syapm.2008.09.007
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Little information is available on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in flooded rice soils. Consequently, a microcosm experiment was conducted to determine the effect of nitrogen fertilizer on the composition of AOB and AOA communities in rice soil by using molecular analyses of ammonia monooxygenase gene (amoA) fragments. Experimental treatments included three levels of N (urea) fertilizer, i.e. 50, 100 and 150 mg N kg(-1) soil. Soil samples were operationally divided into four fractions: surface soil, bulk soil deep layer, rhizosphere and washed root material. NH4+-N was the dominant form of N in soil porewater and increased with N fertilization. Cloning and sequencing of amoA gene fragments showed that the AOB community in the rice soil consisted of three major groups, i.e. Nitrosomonas communis cluster, Nitrosospira cluster 3a and cluster 3b. The sequences related to Nitrosomonas were predominant. There was a clear effect of N fertilizer and soil depth on AOB community composition based on terminal restriction fragment length polymorphism fingerprinting. Nitrosomonas appeared to be more abundant in the potentially oxic or micro-oxic fractions, including surface soil, rhizosphere and washed root material, than the deep layer of anoxic bulk soil. Furthermore, Nitrosomonas increased relatively in the partially oxic fractions and that of Nitrosospira decreased with the increasing application of N fertilizer. However, AOA community composition remained unchanged according to the denaturing gradient gel electrophoresis analyses. (C) 2008 Elsevier GmbH. All rights reserved.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 47 条
[1]   Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria [J].
Aakra, Å ;
Utåker, JB ;
Nes, IF .
FEMS MICROBIOLOGY LETTERS, 2001, 205 (02) :237-242
[2]  
ANDREWS JH, 1986, ADV MICROB ECOL, V9, P99
[4]   Nitrification and denitrification in the rhizosphere of rice: the detection of processes by a new multi-channel electrode [J].
Arth, I ;
Frenzel, P .
BIOLOGY AND FERTILITY OF SOILS, 2000, 31 (05) :427-435
[5]   Denitrification coupled to nitrification in the rhizosphere of rice [J].
Arth, I ;
Frenzel, P ;
Conrad, R .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (04) :509-515
[6]   Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers [J].
Avrahami, S ;
Liesack, W ;
Conrad, R .
ENVIRONMENTAL MICROBIOLOGY, 2003, 5 (08) :691-705
[7]   Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers [J].
Avrahami, S ;
Conrad, R ;
Braker, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (11) :5685-5692
[8]   Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures [J].
Avrhami, S ;
Conrad, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :6152-6164
[9]   Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis [J].
Bollmann, A ;
Schmidt, I ;
Saunders, AM ;
Nicolaisen, MH .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (03) :1276-1282
[10]   Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria [J].
Bollmann, A ;
Bär-Gilissen, MJ ;
Laanbroek, HJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (10) :4751-4757