Evidence for contribution of vascular Nad(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity

被引:148
作者
Sonta, T
Inoguchi, T
Tsubouchi, H
Sekiguchi, N
Kobayashi, K
Matsumoto, S
Utsumi, H
Nawata, H
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept Med & Bioregulatory Sci, Higashi Ku, Fukuoka 8128582, Japan
[2] Kyushu Univ, Grad Sch Pharmaceut Sci, Lab Biofunct Anal, Higashi Ku, Fukuoka 8128582, Japan
关键词
oxidative stress; NAD(P)H oxidase; protein kinase C; obesity; insulin resistance; atherosclerosis; free radicals;
D O I
10.1016/j.freeradbiomed.2004.04.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
At is well established that oxidative stress is enhanced in diabetes. However, the major in vivo source of oxidative stress is not clear. Here we show that vascular NAD(P)H oxidase may be a major source of oxidative stress in diabetic and obese models. In vivo electron spin resonance (ESR)/spin probe was used to evaluate systemic oxidative stress in vivo. The signal decay rate of the spin probe (spin clearance rate; SpCR) significantly increased in streptozotocin-induced diabetic rats 2 weeks after the onset of diabetes. This increase was completely normalized by treatment with the antioxidants a-tocopherol (40 mg/kg) and superoxide dismutase (5000 units/kg), and was significantly inhibited by treatment with a PKC-specific inhibitor, CGP41251 (50 mg/kg), and a NAD(P)H oxidase inhibitor, apocynin (5 mg/kg). Both obese ob/ob mice (10 weeks old) with mild hyperglycemia and Zucker fatty rats (11 weeks old) with normoglycemia exhibited significantly increased SpCR as compared with controls. Again, this increase was inhibited by treatment with both CGP41251 and apocynin. Oral administration of insulin sensitizer, pioglitazone (10 mg/ kg), for 7 days also completely normalized SpCR values. These results suggest that vascular NAD(P)H oxidase may be a major source of increased oxidative stress in diabetes and obesity. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 50 条
[1]   Non-antioxidant molecular functions of α-tocopherol (vitamin E) [J].
Azzi, A ;
Ricciarelli, R ;
Zingg, JM .
FEBS LETTERS, 2002, 519 (1-3) :8-10
[2]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[3]   The role of oxidized lipoproteins in atherogenesis [J].
Berliner, JA ;
Heinecke, JW .
FREE RADICAL BIOLOGY AND MEDICINE, 1996, 20 (05) :707-727
[4]   Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress - Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J].
Blair, AS ;
Hajduch, E ;
Litherland, GJ ;
Hundal, HS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36293-36299
[5]  
BROWNLEE M, 1988, NEW ENGL J MED, V318, P1315
[6]  
DAUGHERTY A, 1995, CARDIOVASC RES, V29, P297, DOI 10.1016/0008-6363(96)88585-3
[7]   Xanthine oxidase is involved in free radical production in type 1 diabetes -: Protection by allopurinol [J].
Desco, MC ;
Asensi, A ;
Márquez, R ;
Martínez-Valls, J ;
Vento, M ;
Pallardó, FV ;
Sastre, J ;
Viña, J .
DIABETES, 2002, 51 (04) :1118-1124
[8]   Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? [J].
Evans, JL ;
Goldfine, ID ;
Maddux, BA ;
Grodsky, GM .
DIABETES, 2003, 52 (01) :1-8
[9]   Mechanisms of increased vascular superoxide production in human diabetes mellitus Role of NAD(P)H oxidase and endothelial nitric oxide synthase [J].
Guzik, TJ ;
Mussa, S ;
Gastaldi, D ;
Sadowski, J ;
Ratnatunga, C ;
Pillai, R ;
Channon, KM .
CIRCULATION, 2002, 105 (14) :1656-1662
[10]  
HALLIWELL B, 1989, BRIT J EXP PATHOL, V70, P737