Engineering algae for biohydrogen and biofuel production

被引:277
作者
Beer, Laura L. [1 ]
Boyd, Eric S. [2 ,3 ]
Peters, John W. [2 ,3 ]
Posewitz, Matthew C. [1 ]
机构
[1] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA
[2] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA
[3] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA
关键词
CHLAMYDOMONAS-REINHARDTII; GENE-EXPRESSION; ARTIFICIAL MICRORNAS; HYDROGEN-PRODUCTION; SULFUR DEPRIVATION; H-2; PRODUCTION; GENOME; BIOSYNTHESIS; COMPLEX; SYSTEM;
D O I
10.1016/j.copbio.2009.06.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
There is currently substantial interest in utilizing eukaryotic algae for the renewable production of several bioenergy carriers, including starches for alcohols, lipids for diesel fuel surrogates, and H-2 for fuel cells. Relative to terrestrial biofuel feedstocks, algae can convert solar energy into fuels at higher photosynthetic efficiencies, and can thrive in salt water systems. Recently, there has been considerable progress in identifying relevant bioenergy genes and pathways in microalgae, and powerful genetic techniques have been developed to engineer some strains via the targeted disruption of endogenous genes and/or transgene expression. Collectively, the progress that has been realized in these areas is rapidly advancing our ability to genetically optimize the production of targeted biofuels.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 51 条
[1]   Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics [J].
Baerenfaller, Katja ;
Grossmann, Jonas ;
Grobei, Monica A. ;
Hull, Roger ;
Hirsch-Hoffmann, Matthias ;
Yalovsky, Shaul ;
Zimmermann, Philip ;
Grossniklaus, Ueli ;
Gruissem, Wilhelm ;
Baginsky, Sacha .
SCIENCE, 2008, 320 (5878) :938-941
[2]   The intricate pathway of starch biosynthesis and degradation in the monocellular alga chlamydomonas reinhardtii [J].
Ball, SG .
AUSTRALIAN JOURNAL OF CHEMISTRY, 2002, 55 (1-2) :49-59
[3]  
BOYD ES, 2009, APPL ENV MI IN PRESS
[4]   Thiamine biosynthesis in algae is regulated by riboswitches [J].
Croft, Martin T. ;
Moulin, Michael ;
Webb, Michael E. ;
Smith, Alison G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (52) :20770-20775
[5]   Aquatic phototrophs: efficient alternatives to land-based crops for biofuels [J].
Dismukes, G. Charles ;
Carrieri, Damian ;
Bennette, Nicholas ;
Ananyev, Gennady M. ;
Posewitz, Matthew C. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (03) :235-240
[6]   Functional integration of the HUP1 hexose symporter gene into the genome of C-reinhardtii:: Impacts on biological H2 production [J].
Doebbe, Anja ;
Rupprecht, Jens ;
Beckmann, Julia ;
Mussgnug, Jan H. ;
Hallmann, Armin ;
Hankamer, Ben ;
Kruse, Olaf .
JOURNAL OF BIOTECHNOLOGY, 2007, 131 (01) :27-33
[7]   Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity [J].
Dubini, Alexandra ;
Mus, Florence ;
Seibert, Michael ;
Grossman, Arthur R. ;
Posewitz, Matthew C. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (11) :7201-7213
[8]   RNA silencing in plants: Yesterday, today, and tomorrow [J].
Eamens, Andrew ;
Wang, Ming-Bo ;
Smith, Neil A. ;
Waterhouse, Peter M. .
PLANT PHYSIOLOGY, 2008, 147 (02) :456-468
[9]   Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities [J].
Girbal, L ;
von Abendroth, G ;
Winkler, M ;
Benton, PMC ;
Meynial-Salles, I ;
Croux, C ;
Peters, JW ;
Happe, T ;
Soucaille, P .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (05) :2777-2781
[10]   Acclimation of Chlamydomonas reinhardtii to its nutrient environment [J].
Grossman, A .
PROTIST, 2000, 151 (03) :201-224