Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic aconitase

被引:56
作者
Cairo, G
Ronchi, R
Recalcati, S
Campanella, A
Minotti, G
机构
[1] Univ Milan, Ist Patol Gen, I-20133 Milan, Italy
[2] CNR, Cell Pathol Ctr, I-20133 Milan, Italy
[3] Univ Milan, Dept Med Sci, I-20121 Milan, Italy
[4] IRCCS, Osped Maggiore, I-20121 Milan, Italy
[5] IRCCS, HS Raffaele, Prot Engn Unit Dibit, I-20132 Milan, Italy
[6] G Dannunzio Univ, Sch Med, Dept Drug Sci, I-66013 Chieti, Italy
关键词
D O I
10.1021/bi025756k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Posttranscriptional regulation of iron homeostasis involves, among other factors, a reversible conversion of the Fe-S enzyme cytoplasmic aconitase to a mRNA-binding iron regulatory protein (IRP-1) that lacks an Fe-S cluster. Previous studies have shown that aconitase/IRP-1 may be a target of (NO)-N-. or peroxynitrite (ONOO-), formed after reaction of (NO)-N-. with superoxide anion (O-2(.-)); however, the mechanisms and consequences of such interactions have remained uncertain. In this study, recombinant aconitase/IRP-1 was exposed to SIN-1, whose thermal decomposition releases (NO)-N-. and O-2(.-). Results showed that SIN-1 was able to induce concomitant inactivation of aconitase and activation of IRP-1, attributable to cluster disassembly induced by ONOO-. SIN-1 was used also in lysates of J774A.1 mouse macrophages grown under control conditions, or subjected to iron loading or starvation by treatment with hemin or desferrioxamine, respectively. Three lines of evidence confirmed that ONOO- activated IRP-1 by removing iron from the Fe-S cluster of cytoplasmic aconitase. First, IRP-1 activation was accompanied by iron release and loss of aconitase activity. Second, aconitase activity was recovered by reassembling Fe-S clusters with cysteine and ferrous ammonium sulfate. Third, iron release and IRP-1 activation were observed in lysates from control or iron-loaded macrophages, containing increasing levels of Fe-S clusters, but not in lysates from iron-starved macrophages, in which aconitase had already undergone cluster disassembly and switched to IRP-1. (NO)-N-. was less efficient than ONOO- in attacking the Fe-S cluster of cytoplasmic aconitase; in fact, SIN-1-dependent iron release and IRP-1 activation were diminished by superoxide dismutase, which scavenged O-2(.-) before it reacted with (NO)-N-. to form ONOO-. Under comparable conditions, however, both (NO)-N-. and ONOO- inactivated an IRP-2 unable to assemble an Fe-S cluster. These results indicate that (NO)-N-. and ONOO- may activate IRP-1 by attacking the Fe-S cluster of cytoplasmic aconitase, while also inactivating the cluster-deficient IRP-2. Such divergent actions offer clues to explain links between iron homeostasis and reactive nitrogen species in macrophages involved in inflammation or other pathophysiologic conditions.
引用
收藏
页码:7435 / 7442
页数:8
相关论文
共 39 条
[1]  
AUST SD, 1990, METHOD ENZYMOL, V186, P457
[2]   Nitric oxide and the regulation of gene expression [J].
Bogdan, C .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :66-75
[3]   Nitrosative and oxidative modulation of iron regulatory proteins [J].
Bouton, C .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (8-9) :1043-1053
[4]   Modulation of iron regulatory protein functions - Further insights into the role of nitrogen- and oxygen-derived reactive species [J].
Bouton, C ;
Raveau, M ;
Drapier, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (04) :2300-2306
[5]   Redox modulation of iron regulatory proteins by peroxynitrite [J].
Bouton, C ;
Hirling, H ;
Drapier, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :19969-19975
[6]   Converse modulation of IRP1 and IRP2 by immunological stimuli in murine RAW 264.7 macrophages [J].
Bouton, C ;
Oliveira, L ;
Drapier, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (16) :9403-9408
[7]   Human cytoplasmic aconitase (iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding [J].
Brazzolotto, X ;
Gaillard, J ;
Pantopoulos, K ;
Hentze, MW ;
Moulis, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (31) :21625-21630
[8]   Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity: A protective stratagem against oxidative injury [J].
Cairo, G ;
Castrusini, E ;
Minotti, G ;
BernelliZazzera, A .
FASEB JOURNAL, 1996, 10 (11) :1326-1335
[9]   Iron regulatory proteins in pathobiology [J].
Cairo, G ;
Pietrangelo, A .
BIOCHEMICAL JOURNAL, 2000, 352 :241-250
[10]   BIOSYNTHESIS OF NITRIC-OXIDE ACTIVATES IRON REGULATORY FACTOR IN MACROPHAGES [J].
DRAPIER, JC ;
HIRLING, H ;
WIETZERBIN, J ;
KALDY, P ;
KUHN, LC .
EMBO JOURNAL, 1993, 12 (09) :3643-3649